Correlation-Cutoff Method for Covariance Localization in Strongly Coupled Data Assimilation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Anderson, 2003, A local least squares framework for ensemble filtering, Mon. Wea. Rev., 131, 634, 10.1175/1520-0493(2003)131<0634:ALLSFF>2.0.CO;2
Evensen, 1994, Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, J. Geophys. Res., 99, 10 143, 10.1029/94JC00572
Gelb, 1974
Hamill, 2001, Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter, Mon. Wea. Rev., 129, 2776, 10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2
Han, 2013, Error covariance estimation for coupled data assimilation using a Lorenz atmosphere and a simple pycnocline ocean model, J. Climate, 26, 10 218, 10.1175/JCLI-D-13-00236.1
Houtekamer, 2001, A sequential ensemble Kalman filter for atmospheric data assimilation, Mon. Wea. Rev., 129, 123, 10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2
Hunt, 2007, Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter, Physica D, 230, 112, 10.1016/j.physd.2006.11.008
Kalman, 1960, A new approach to linear filtering and prediction problems, J. Basic Eng., 82, 35, 10.1115/1.3662552
Kang, 2011, “Variable localization” in an ensemble Kalman filter: Application to the carbon cycle data assimilation, J. Geophys. Res., 116, D09110, 10.1029/2010JD014673
Laloyaux, 2016, A coupled data assimilation system for climate reanalysis, Quart. J. Roy. Meteor. Soc., 142, 65, 10.1002/qj.2629
Li, 2009, Simultaneous estimation of covariance inflation and observation errors within an ensemble Kalman filter, Quart. J. Roy. Meteor. Soc., 135, 523, 10.1002/qj.371
Lorenz, 1963, Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130, 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
Lu, 2015, Strongly coupled data assimilation using leading averaged coupled covariance (LACC). Part I: Simple model study, Mon. Wea. Rev., 143, 3823, 10.1175/MWR-D-14-00322.1
Lu, 2015, Strongly coupled data assimilation using leading averaged coupled covariance (LACC). Part II: CGCM experiments, Mon. Wea. Rev., 143, 4645, 10.1175/MWR-D-15-0088.1
Mulholland, 2015, Origin and impact of initialization shocks in coupled atmosphere-ocean forecasts, Mon. Wea. Rev., 143, 4631, 10.1175/MWR-D-15-0076.1
Ng, 2011, The role of model dynamics in ensemble Kalman filter performance for chaotic systems, Tellus, 63A, 958, 10.1111/j.1600-0870.2011.00539.x
Norwood, 2013, Lyapunov, singular and bred vectors in a multi-scale system: An empirical exploration of vectors related to instabilities, J. Phys. A, 46, 10.1088/1751-8113/46/25/254021
Peña, 2004, Separating fast and slow modes in coupled chaotic systems, Nonlinear Processes Geophys., 11, 319, 10.5194/npg-11-319-2004
Penny, 2017, Coupled data assimilation for integrated earth system analysis and prediction, Bull. Amer. Meteor. Soc., 98, ES169, 10.1175/BAMS-D-17-0036.1
Ruiz-Barradas, 2017, Finding the driver of local ocean–atmosphere coupling in reanalyses and CMIP5 climate models, Climate Dyn., 48, 2153, 10.1007/s00382-016-3197-1
Saha, 2010, The NCEP Climate Forecast System Reanalysis, Bull. Amer. Meteor. Soc., 91, 1015, 10.1175/2010BAMS3001.1
Sakov, 2008, Implications of the form of the ensemble transformation in the ensemble square root filters, Mon. Wea. Rev., 136, 1042, 10.1175/2007MWR2021.1
Sluka, 2016, Assimilating atmospheric observations into the ocean using strongly coupled ensemble data assimilation, Geophys. Res. Lett., 43, 752, 10.1002/2015GL067238
Smith, 2017, Estimating forecast error covariances for strongly coupled atmosphere–ocean 4D-Var data assimilation, Mon. Wea. Rev., 145, 4011, 10.1175/MWR-D-16-0284.1
Tardif, 2014, Coupled atmosphere-ocean data assimilation experiments with a low-order climate model, Climate Dyn., 43, 1631, 10.1007/s00382-013-1989-0
Tippett, 2003, Ensemble square root filters, Mon. Wea. Rev., 131, 1485, 10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2
Trevisan, 2011, On the Kalman Filter error covariance collapse into the unstable subspace, Nonlinear Processes Geophys., 18, 243, 10.5194/npg-18-243-2011
Wang, 2003, A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes, J. Atmos. Sci., 60, 1140, 10.1175/1520-0469(2003)060<1140:ACOBAE>2.0.CO;2
Yang, 2006, Data assimilation as synchronization of truth and model: Experiments with the three-variable Lorenz system, J. Atmos. Sci., 63, 2340, 10.1175/JAS3739.1