Coronavirus infections and immune responses

Journal of Medical Virology - Tập 92 Số 4 - Trang 424-432 - 2020
Geng Li1,2, Yaohua Fan3, Yanni Lai3, Tiantian Han3, Zonghui Li2, Peiwen Zhou1, Pan Pan2, Wenbiao Wang1, Dingwen Hu4, Xiaohong Liu5, Qiwei Zhang1,6, Jianguo Wu1,4
1Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
2Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
3The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
4State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
5The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
6School of Pubic Health, Southern Medical University, Guangzhou, China

Tóm tắt

Abstract

Coronaviruses (CoVs) are by far the largest group of known positive‐sense RNA viruses having an extensive range of natural hosts. In the past few decades, newly evolved Coronaviruses have posed a global threat to public health. The immune response is essential to control and eliminate CoV infections, however, maladjusted immune responses may result in immunopathology and impaired pulmonary gas exchange. Gaining a deeper understanding of the interaction between Coronaviruses and the innate immune systems of the hosts may shed light on the development and persistence of inflammation in the lungs and hopefully can reduce the risk of lung inflammation caused by CoVs. In this review, we provide an update on CoV infections and relevant diseases, particularly the host defense against CoV‐induced inflammation of lung tissue, as well as the role of the innate immune system in the pathogenesis and clinical treatment.

Từ khóa


Tài liệu tham khảo

World Health Organization.Laboratory testing of human suspected cases of novel coronavirus(nCoV) infection [published online ahead of print January 21 2020].https://apps.who.int/iris/bitstream/handle/10665/330374/WHO‐2019‐nCoV‐laboratory‐2020.1‐eng.pdf

World Health Organization.Novel Coronavirus (2019‐nCoV) situation report‐2[published online ahead of print January 21 2020].https://www.who.int/docs/default‐source/coronaviruse/situation‐reports/20200122‐sitrep‐2‐2019‐ncov.pdf

World Health Organization.Middle East respiratory syndrome coronavirus(MERS‐CoV) [published online ahead of print January 21 2020].https://www.who.int/emergencies/mers‐cov/en/

World Health Organization.WHO MERS global summary and assessment of risk[published online ahead of print January 21 2020].https://www.who.int/csr/disease/coronavirus_infections/risk‐assessment‐august‐2018.pdf?ua=1

10.1177/1010539510373010

10.1016/j.cell.2006.02.015

10.1038/ni.1863

10.1038/ni.1639

10.1038/ni.1638

10.1126/stke.3572006re13

10.1038/nature04369

10.1016/j.virol.2015.02.017

10.1111/j.1600-065X.2008.00727.x

10.1016/j.coi.2014.12.012

10.1002/rmv.633

10.1016/j.cell.2010.01.022

10.1016/j.chom.2013.01.012

10.1038/nature13590

10.1038/embor.2011.190

10.1074/jbc.M109.007179

10.1016/j.cell.2012.11.048

10.1146/annurev.biochem.74.082803.133347

10.1038/sj.onc.1204787

10.1016/S1074-7613(04)00046-9

10.4049/jimmunol.1003111

10.1038/nature07725

10.1111/febs.13014

10.1016/j.immuni.2005.03.004

10.1038/nri2569

10.1038/ni.2749

10.1016/j.immuni.2011.11.015

10.1038/35047123

10.1016/j.cell.2009.06.015

10.1126/science.1232458

10.4049/jimmunol.1701048

10.1128/JVI.05738-11

10.1016/j.coviro.2015.02.005

10.3390/v11100961

10.1038/nri3581

10.1371/journal.ppat.1008079

10.1016/S0092-8674(02)01201-1

10.1038/nrrheum.2009.136

10.4161/auto.18935

10.1007/978-1-4939-8873-0_26

10.4049/jimmunol.0900707

10.1146/annurev-immunol-032713-120231

10.1128/JVI.79.4.2079-2086.2005

10.1128/JVI.01782-06

10.1007/s11262-010-0544-x

10.1089/vim.2013.0127

10.1128/JVI.01462-09

10.1371/journal.ppat.1000196

Kaewraemruaen C, 2019, Dendritic cells as key players in systemic lupus erythematosus, Asian Pac J Allergy Immunol

Wu L, 2004, Development of dendritic cell system, Cell Mol Immunol, 1, 112

10.4049/jimmunol.1102552

10.1371/journal.pone.0040179

10.1093/intimm/dxr104

10.1111/j.1365-2249.2012.04628.x

10.1128/JVI.03681-14

White MR, 2007, Impact of neutrophils on antiviral activity of human bronchoalveolar lavage fluid, Am J Physiol, 293, L1293

10.1111/lam.13213

10.3389/fcimb.2019.00128

10.1146/annurev.iy.11.040193.000541

10.1038/s41467-019-11258-x

10.1128/JVI.60.3.1068-1074.1986

10.1097/00002030-199308000-00019

10.1016/j.micinf.2015.10.009

10.4049/jimmunol.181.9.6337

10.1371/journal.pone.0023730

10.1128/CMR.00102-14

10.1128/CMR.00023-07

Sato K, 2018, Experimental adaptive evolution of simian immunodeficiency virus sivcpz to pandemic human immunodeficiency virus type 1 by using a humanized mouse model, J Virol, 92, e01905‐17, 10.1128/JVI.01905-17

10.3390/v4050833

Maloir Q, 2018, [Acute respiratory distress revealing antisynthetase syndrome], Rev Med Liege, 73, 370

10.1073/pnas.1323279111

10.1073/pnas.1510830112

10.1128/JVI.01505-14

10.1016/j.vaccine.2016.02.063

10.1128/JVI.01281-09

10.1586/17476348.2014.854167

10.3390/ijms20143394

10.1007/978-3-030-28524-1_9

10.1042/BJ20050698

10.1155/2019/6491738

10.14202/vetworld.2019.1554-1562

10.6026/97320630010533

10.1093/infdis/jiy311

10.1093/infdis/jix209

10.1007/s11427-018-9343-8

10.1371/journal.pone.0217626

10.1165/rcmb.2012-0428OC

10.1128/mBio.01753-18

10.1128/JVI.00912-14

10.1093/infdis/jiw080

10.1016/j.antiviral.2017.03.025

10.1016/j.vaccine.2014.04.016

10.1128/JVI.78.22.12672-12676.2004

10.1099/jmm.0.45561-0