Cornell potential in generalized uncertainty principle formalism: the case of Schrödinger equation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Chang, L.N., Minic, D., Okamura, N., Takeuchi, T.: The effect of the minimal length uncertainty relation on the density of states and the cosmological constant problem. Phys. Rev. D 65, 125028 (2002)
Das, S., Vagenas, E.C.: Universality of quantum gravity corrections. Phys. Rev. Lett. 101, 221301 (2008)
Nozari, K., Azizi, T.: Some aspects of minimal length quantum mechanics. Gen. Relativ. Gravit. 38, 735–742 (2006)
Akhoury, R., Yao, Y.P.: Minimal length uncertainty relation and the hydrogen spectrum. Phys. Lett. B 572, 37–42 (2003)
Haouat, S.: Schrödinger equation and resonant scattering in the presence ofa minimal length. Phys. Lett. B 729, 33–38 (2014)
Oakes, Antonacci: T.L., Francisco, R.O., Fabris, J.C., Nogueira, J.A.: Ground state of the hydrogen atom via dirac equation in a minimal length scenario. Eur. Phys. J. C 73, 2495 (2013)
Hassanabadi, H., Hooshmand, P., Zarrinkamar, S.: The generalized uncertainty principle and harmonic interaction in three spatial dimensions. Few-Body Syst 56(1), 19–27 (2015)
Nozari, K., Karami, M.: Minimal length and generalized dirac equation. Mod. Phys. Lett. A 20, 3095–3104 (2005)
Nouicer, K.: Coulomb potential in one dimension with minimal length: a path integral approach. J. Math. Phys. 48, 112104 (2007) arXiv:quant-ph/0512003
Bouaziz, D., Ferkous, N.: Hydrogen atom in momentum space with a minimal length. Phys. Rev. A 82, 022105 (2010)
Zarrinkamar, S., Rajabi, A.A., Hassanabadi, H.: Dirac equation for the harmonic scalar and vector potentials and linear plus coulomb-like tensor potential; The SUSY approach. Ann. Phys. 325, 2522 (2010)
Castro, L.B.: Relating pseudospin and spin symmetries through chiral transformation with tensor interaction. Phys. Rev. C 86, 052201 (2012)
Hall, R., Saad, N.: Schrödinger spectrum generated by the Cornell potential. Open Phys. 13, 81 (2015)
Chen, J.K.: Spectral method for the Cornell and screened Cornell potentials in momentum space. Phys. Rev. D 88, 076006 (2013)