Cornell potential in generalized uncertainty principle formalism: the case of Schrödinger equation

K. Jahankohan1, S. Zarrinkamar2, H. Hassanabadi1
1Physics Department, University of Shahrood, Shahrood, Iran
2Department of Basic Sciences, Garmsar Branch, Islamic Azad University, Garmsar, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Chang, L.N., Minic, D., Okamura, N., Takeuchi, T.: The effect of the minimal length uncertainty relation on the density of states and the cosmological constant problem. Phys. Rev. D 65, 125028 (2002)

Das, S., Vagenas, E.C.: Universality of quantum gravity corrections. Phys. Rev. Lett. 101, 221301 (2008)

Nozari, K., Azizi, T.: Some aspects of minimal length quantum mechanics. Gen. Relativ. Gravit. 38, 735–742 (2006)

Akhoury, R., Yao, Y.P.: Minimal length uncertainty relation and the hydrogen spectrum. Phys. Lett. B 572, 37–42 (2003)

Haouat, S.: Schrödinger equation and resonant scattering in the presence ofa minimal length. Phys. Lett. B 729, 33–38 (2014)

Oakes, Antonacci: T.L., Francisco, R.O., Fabris, J.C., Nogueira, J.A.: Ground state of the hydrogen atom via dirac equation in a minimal length scenario. Eur. Phys. J. C 73, 2495 (2013)

Hassanabadi, H., Hooshmand, P., Zarrinkamar, S.: The generalized uncertainty principle and harmonic interaction in three spatial dimensions. Few-Body Syst 56(1), 19–27 (2015)

Nozari, K., Karami, M.: Minimal length and generalized dirac equation. Mod. Phys. Lett. A 20, 3095–3104 (2005)

Nouicer, K.: Coulomb potential in one dimension with minimal length: a path integral approach. J. Math. Phys. 48, 112104 (2007) arXiv:quant-ph/0512003

Bouaziz, D., Ferkous, N.: Hydrogen atom in momentum space with a minimal length. Phys. Rev. A 82, 022105 (2010)

Zarrinkamar, S., Rajabi, A.A., Hassanabadi, H.: Dirac equation for the harmonic scalar and vector potentials and linear plus coulomb-like tensor potential; The SUSY approach. Ann. Phys. 325, 2522 (2010)

Dong, S.H.: Wave Equations in Higher Dimensions. Springer, Berlin (2011)

Castro, L.B.: Relating pseudospin and spin symmetries through chiral transformation with tensor interaction. Phys. Rev. C 86, 052201 (2012)

Hall, R., Saad, N.: Schrödinger spectrum generated by the Cornell potential. Open Phys. 13, 81 (2015)

Chen, J.K.: Spectral method for the Cornell and screened Cornell potentials in momentum space. Phys. Rev. D 88, 076006 (2013)

Patel, B., Vinodkumar, P.C.: Properties of $$Q{\bar{Q}}(Q\in b,c)$$ Q Q ¯ ( Q ∈ b , c ) mesons in Coulomb plus power potential (CPP $$_{\rm v}$$ v ). J Phys. G: Nucl. Part. Phys. 36, 035003 (2009)