Coordination of reach-to-grasp in physical and haptic-free virtual environments
Tóm tắt
Virtual reality (VR) offers unprecedented opportunity as a scientific tool to study visuomotor interactions, training, and rehabilitation applications. However, it remains unclear if haptic-free hand-object interactions in a virtual environment (VE) may differ from those performed in the physical environment (PE). We therefore sought to establish if the coordination structure between the transport and grasp components remain similar whether a reach-to-grasp movement is performed in PE and VE. Reach-to-grasp kinematics were examined in 13 healthy right-handed young adults. Subjects were instructed to reach-to-grasp-to-lift three differently sized rectangular objects located at three different distances from the starting position. Object size and location were matched between the two environments. Contact with the virtual objects was based on a custom collision detection algorithm. Differences between the environments were evaluated by comparing movement kinematics of the transport and grasp components. Correlation coefficients, and the slope of the regression lines, between the reach and grasp components were similar for the two environments. Likewise, the kinematic profiles of the transport velocity and grasp aperture were strongly correlated across the two environments. A rmANOVA further identified some similarities and differences in the movement kinematics between the two environments - most prominently that the closure phase of reach-to-grasp movement was prolonged when movements were performed in VE. Reach-to-grasp movement patterns performed in a VE showed both similarities and specific differences compared to those performed in PE. Additionally, we demonstrate a novel approach for parsing the reach-to-grasp movement into three phases- initiation, shaping, closure- based on established kinematic variables, and demonstrate that the differences in performance between the environments are attributed to the closure phase. We discuss this in the context of how collision detection parameters may modify hand-object interactions in VE. Our study shows that haptic-free VE may be a useful platform to study reach-to-grasp movements, with potential implications for haptic-free VR in neurorehabilitation.
Tài liệu tham khảo
Seth A, Vance JM, Oliver JH. Virtual reality for assembly methods prototyping: a review. Virtual Reality. 2010;15(1):5–20.
Li L, Yu F, Shi D, Shi J, Tian Z, Yang J, Wang X, Jiang Q. Application of virtual reality technology in clinical medicine. Am J Transl Res. 2017(9, 9):3867–80.
Holden MK. Virtual environments for motor rehabilitation: review. CyberPsychol Behav. 2005;8(3):187–211.
Rose T, Nam CS, Chen KB. Immersion of virtual reality for rehabilitation - review. Appl Ergon. 2018;69:153–61.
Adamovich SV, Merians AS, Boian R, Lewis JA, Tremaine M, Burdea GS, Recce M, Poizner H. A virtual reality-based exercise system for hand rehabilitation post-stroke. Presence-Teleop Virt. 2005;14(2):161–74.
Fluet GG, Merians AS, Qiu QY, Davidow A, Adamovich SV. Comparing integrated training of the hand and arm with isolated training of the same effectors in persons with stroke using haptically rendered virtual environments, a randomized clinical trial. J Neuroeng Rehabil. 2014;11.
Merians AS, Tunik E, Adamovich SV. Virtual reality to maximize function for hand and arm rehabilitation: exploration of neural mechanisms. Stud Health Technol Inform. 2009;145:109–25.
Burdea GC. Haptics issues in virtual environments. Computer Graphics International. 2000, Proceedings;(2000):295–302.
Borst CW, Volz RA. Evaluation of a haptic mixed reality system for interactions with a virtual control panel. Presence-Teleop Virt. 2005;14(6):677–96.
Smeragliuolo AH, Hill NJ, Disla L, Putrino D. Validation of the leap motion controller using markered motion capture technology. J Biomech. 2016;49(9):1742–50.
Adamovich SV, Fluet GG, Tunik E, Merians AS. Sensorimotor training in virtual reality: a review. NeuroRehabilitation. 2009;25(1):29–44.
Pallesen H, Andersen MB, Hansen GM, Lundquist CB, Brunner I. Patients' and health Professionals' experiences of using virtual reality Technology for Upper Limb Training after stroke: a qualitative substudy. Rehab Res Pract. 2018.
Magdalon EC, Michaelsen SM, Quevedo AA, Levin MF. Comparison of grasping movements made by healthy subjects in a 3-dimensional immersive virtual versus physical environment. Acta Psychol. 2011;138(1):126–34.
Levin MF, Magdalon EC, Michaelsen SM, Quevedo AA. Quality of grasping and the role of haptics in a 3-D immersive virtual reality environment in individuals with stroke. IEEE Trans Neural Syst Rehabil Eng. 2015;23(6):1047–55.
Jeannerod M: Attention and performance, IX. 1981, Erlbaum, Hillsdale, NJ:153–169.
Jeannerod M. The timing of natural Prehension movements. J Motor Behav. 1984;16(3):235–54.
Gentilucci M, Chieffi S, Scarpa M, Castiello U. Temporal coupling between transport and grasp components during prehension movements: effects of visual perturbation. Behav Brain Res. 1992;47(1):71–82.
Marteniuk RG, Leavitt JL, Mackenzie CL, Athenes S. Functional-relationships between grasp and transport components in a Prehension task. Hum Movement Sci. 1990;9(2):149–76.
Castiello U. The neuroscience of grasping. Nat Rev Neurosci. 2005;6(9):726–36.
van Vliet PM, Sheridan MR. Coordination between reaching and grasping in patients with hemiparesis and healthy subjects. Arch Phys Med Rehabil. 2007;88(10):1325–31.
Paulignan Y, MacKenzie C, Marteniuk R, Jeannerod M. Selective perturbation of visual input during prehension movements. 1. The effects of changing object position. Exp Brain Res. 1991;83(3):502–12.
Davare M, Parikh PJ, Santello M. Sensorimotor uncertainty modulates corticospinal excitability during skilled object manipulation. J Neurophysiol. 2019.
Shibata D, Santello M. Role of digit placement control in sensorimotor transformations for dexterous manipulation. J Neurophysiol. 2017;118(5):2935–43.
Rizzo AS, Kim GJ. A SWOT analysis of the field of virtual reality rehabilitation and therapy. Presence-Teleop Virt. 2005;14(2):119–46.
Viau A, Feldman AG, McFadyen BJ, Levin MF. Reaching in reality and virtual reality: a comparison of movement kinematics in healthy subjects and in adults with hemiparesis. J Neuroeng Rehabil. 2004;1(1):11.
Knaut LA, Subramanian SK, McFadyen BJ, Bourbonnais D, Levin MF. Kinematics of pointing movements made in a virtual versus a physical 3-dimensional environment in healthy and stroke subjects. Arch Phys Med Rehabil. 2009;90(5):793–802.
Saling M, Mescheriakov S, Molokanova E, Stelmach GE, Berger M. Grip reorganization during wrist transport: the influence of an altered aperture. Exp Brain Res. 1996;108(3):493–500.
Haggard P, Wing A. Coordination of hand aperture with the spatial path of hand transport. Exp Brain Res. 1998;118(2):286–92.
Robert MT, Levin MF. Validation of reaching in a virtual environment in typically developing children and children with mild unilateral cerebral palsy. Dev Med Child Neurol. 2018;60(4):382–90.
Rand MK, Lemay M, Squire LM, Shimansky YP, Stelmach GE. Role of vision in aperture closure control during reach-to-grasp movements. Exp Brain Res. 2007;181(3):447–60.
Fu Q, Ushani A, Jentoft L, Howe RD, Santella M. Human reach-to-grasp compensation with object pose uncertainty. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:6893–6.
Youn J, Wohn K: Realtime collision detection for virtual reality applications. In: Proceedings of IEEE virtual reality annual international symposium: 18–22 sept. 1993 1993; 1993: 415–421.
Fu QS, Santello M: Towards a complete description of grasping kinematics: a framework for quantifying human grasping and manipulation. 2011 Annual International Conference of the Ieee Engineering in Medicine and Biology Society (Embc) 2011:8247–8250.
Prachyabrued M, Borst CW. Visual feedback for virtual grasping. In: 2014 IEEE symposium on 3D user interfaces (3DUI): 29–30 march 2014 2014; 2014. p. 19–26.
Bozzacchi C, Volcic R, Domini F. Effect of visual and haptic feedback on grasping movements. J Neurophysiol. 2014;112(12):3189–96.
Fu Q, Zhang W, Santello M. Anticipatory planning and control of grasp positions and forces for dexterous two-digit manipulation. J Neurosci. 2010;30(27):9117–26.