Coordination between binocular field and spontaneous self-motion specifies the efficiency of planarians’ photo-response orientation behavior

Communications Biology - Tập 1 Số 1
Yoshitaro Akiyama1, Kiyokazu Agata1, Takeshi Inoue1
1Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan

Tóm tắt

AbstractEyes show remarkable diversity in morphology among creatures. However, little is known about how morphological traits of eyes affect behaviors. Here, we investigate the mechanisms responsible for the establishment of efficient photo-response orientation behavior using the planarian Dugesia japonica as a model. Our behavioral assays reveal the functional angle of the visual field and show that the binocular field formed by paired eyes in D. japonica has an impact on the accurate recognition of the direction of a light source. Furthermore, we find that the binocular field in coordination with spontaneous wigwag self-motion of the head specifies the efficiency of photo-responsive evasive behavior in planarians. Our findings suggest that the linkage between the architecture of the sensory organs and spontaneous self-motion is a platform that serves for efficient and adaptive outcomes of planarian and potentially other animal behaviors.

Từ khóa


Tài liệu tham khảo

Kobayashi, H. & Kohshima, S. Unique morphology of the human eye. Nature 387, 767–768, https://doi.org/10.1038/42842 (1997).

Land, M. F. & Nilsson, D. E. Animal eyes. (Oxford University Press, UK, 2012).

Hays, G. C. A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations. Hydrobiologia 503, 163–170, https://doi.org/10.1023/B:HYDR.0000008476.23617.b0 (2003).

Pearre, S. Eat and run? The hunger/satiation hypothesis in vertical migration: history, evidence and consequences. Biol. Rev. Camb. Philos. Soc. 78, 1–79, https://doi.org/10.1017/s146479310200595x (2003).

Togashi, T. & Cox, P. A. Phototaxis and the evolution of isogamy and “slight anisogamy” in marine green algae: insights from laboratory observations and numerical experiments. Bot. J. Linn. Soc. 144, 321–327, https://doi.org/10.1111/j.1095-8339.2003.00255.x (2004).

Mineta, K. et al. Origin and evolutionary process of the CNS elucidated by comparative genomics analysis of planarian ESTs. Proc. Natl. Acad. Sci. USA 100, 7666–7671, https://doi.org/10.1073/pnas.1332513100 (2003).

Gehring, W. J. Historical perspective on the development and evolution of eyes and photoreceptors. Int. J. Dev. Biol. 48, 707–717, https://doi.org/10.1387/ijdb.041900wg (2004).

Parker, G. H. & Burnett, F. L. The reactions of planarians with and without eyes to light. Am. J. Physiol. 4, 373–385, https://doi.org/10.1152/ajplegacy.1900.4.8.373 (1900).

Walter, H. E. The reactions of planarians to light. J. Exp. Zool. 5, 35–162, https://doi.org/10.1002/jez.1400050104 (1907).

Taliaferro, W. H. Reactions to light in planaria maculata, with special reference to the function and structure of the eyes. J. Exp. Zool. 31, 59–116, https://doi.org/10.1002/jez.1400310103 (1920).

Umesono, Y., Watanabe, K. & Agata, K. Distinct structural domains in the planarian brain defined by the expression of evolutionarily conserved homeobox genes. Dev. Genes Evol. 209, 31–39, https://doi.org/10.1007/s004270050224 (1999).

Pineda, D. et al. Searching for the prototypic eye genetic network: sine oculis is essential for eye regeneration in planarians. Proc. Natl. Acad. Sci. USA 97, 4525–4529, https://doi.org/10.1073/pnas.97.9.4525 (2000).

Mannini, L. et al. Djeyes absent (Djeya) controls prototypic planarian eye regeneration by cooperating with the transcription factor Djsix-1. Dev. Biol. 269, 346–359, https://doi.org/10.1016/j.ydbio.2004.01.042 (2004).

Lapan, S. W. & Reddien, P. W. Transcriptome analysis of the planarian eye identifies ovo as a specific regulator of eye regeneration. Cell Rep. 2, 294–307, https://doi.org/10.1016/j.celrep.2012.06.018 (2012).

Carpenter, K. S., Morita, M. & Best, J. B. Ultrastructure of the photoreceptor of the planarian Dugesia dorotocephala. I. Normal eye. Cell Tissue Res. 148, 143–158, https://doi.org/10.1007/BF00224579 (1974).

Sakai, F., Agata, K., Orii, H. & Watanabe, K. Organization and regeneration ability of spontaneous supernumerary eyes in planarians —eye regeneration field and pathway selection by optic nerves —. Zool. Sci. 17, 375–381, https://doi.org/10.2108/jsz.17.375 (2000).

Okamoto, K., Takeuchi, K. & Agata, K. Neural projections in planarian brain revealed by fluorescent dye tracing. Zool. Sci. 22, 535–546, https://doi.org/10.2108/zsj.22.535 (2005).

Agata, K. et al. Structure of the planarian central nervous system (CNS) revealed by neuronal cell markers. Zool. Sci. 15, 433–440, https://doi.org/10.2108/zsj.15.433 (1998).

Hesse, R. Untersuchungen über die organe der lichtempfindung bei niedern thieren.II. Die Augen der Plathelminthen, insonderheit der Tricladen Turbellarien. Zeit Wiss. Zool. 62, 527–582 (1897).

Umesono, Y., Watanabe, K. & Agata, K. A planarian orthopedia homolog is specifically expressed in the branch region of both the mature and regenerating brain. Dev. Growth Differ. 39, 723–727, https://doi.org/10.1046/j.1440-169X.1997.t01-5-00008.x (1997).

Cebria, F. et al. The expression of neural-specific genes reveals the structural and molecular complexity of the planarian central nervous system. Mech. Dev. 116, 199–204, https://doi.org/10.1016/S0925-4773(02)00134-X (2002).

Ross, K. G., Currie, K. W., Pearson, B. J. & Zayas, R. M. Nervous system development and regeneration in freshwater planarians. Wiley Interdiscip. Rev. Dev. Biol. 6, e266​, https://doi.org/10.1002/wdev.266 (2017).

Inoue, T. et al. Morphological and functional recovery of the planarian photosensing system during head regeneration. Zool. Sci. 21, 275–283, https://doi.org/10.2108/zsj.21.275 (2004).

Takano, T. et al. Regeneration-dependent conditional gene knockdown (Readyknock) in planarian: demonstration of requirement for Djsnap-25 expression in the brain for negative phototactic behavior. Dev. Growth. Differ. 49, 383–394, https://doi.org/10.1111/j.1440-169X.2007.00936.x (2007).

Inoue, T., Yamashita, T. & Agata, K. Thermosensory signaling by TRPM is processed by brain serotonergic neurons to produce planarian thermotaxis. J. Neurosci. 34, 15701–15714, https://doi.org/10.1523/JNEUROSCI.5379-13.2014 (2014).

Shimoyama, S., Inoue, T., Kashima, M. & Agata, K. Multiple neuropeptide-coding genes involved in planarian pharynx extension. Zool. Sci. 33, 311–319, https://doi.org/10.2108/zs150170 (2016).

Arenas, O. M. et al. Activation of planarian TRPA1 by reactive oxygen species reveals a conserved mechanism for animal nociception. Nat. Neurosci. 20, 1686–1693, https://doi.org/10.1038/s41593-017-0005-0 (2017).

Nishimura, K. et al. Identification of glutamic acid decarboxylase gene and distribution of GABAergic nervous system in the planarian Dugesia japonica. Neuroscience 153, 1103–1114, https://doi.org/10.1016/j.neuroscience.2008.03.026 (2008).

Akiyama, Y., Agata, K. & Inoue, T. Spontaneous behaviors and wall-curvature lead to apparent wall preference in planarian. PLoS One 10, e0142214, https://doi.org/10.1371/journal.pone.0142214 (2015).

Inoue, T. in Brain Evolution by Design: From Neural Origin to Cognitive Architecture (eds. Shuichi Shigeno, Yasunori Murakami, & Tadashi Nomura) Chapter 4, 79–100 (Springer, Japan, 2017).

Nishimura, K. et al. Identification and distribution of tryptophan hydroxylase (TPH)-positive neurons in the planarian​ Dugesia japonica. Neurosci. Res. 59, 101–106, https://doi.org/10.1016/j.neures.2007.05.014 (2007).

Sato, Y., Kobayashi, K., Matsumoto, M., Hoshi, M. & Negishi, S. Comparative study of eye defective worm 'menashi' and regenerating wild-type in planarian, Dugesia ryukyuensis. Pigment. Cell Res. 18, 86–91, https://doi.org/10.1111/j.1600-0749.2005.00220 (2005).

Lambrus, B. G. et al. Tryptophan hydroxylase is required for eye melanogenesis in the planarian Schmidtea mediterranea. PLoS One 10, e0127074, https://doi.org/10.1371/journal.pone.0127074 (2015).

Randel, N. & Jekely, G. Phototaxis and the origin of visual eyes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 20150042​, https://doi.org/10.1098/rstb.2015.0042(2016).

Rompolas, P., Patel-King, R. S. & King, S. M. An outer arm Dynein conformational switch is required for metachronal synchrony of motile cilia in planaria. Mol. Biol. Cell 21, 3669–3679, https://doi.org/10.1091/mbc.E10-04-0373 (2010).

Loeb, J. Beiträge zur Gehirnphysiologie der Würmer. Pflüg. Arch. Bd. 56, 247–269, https://doi.org/10.1007/BF01795525 (1894).

Aikawa, M. & Shimozawa, A. The multiple eyes of Polycelis. 1. Relation between the number of eyes and body length. Hydrobiologia 227, 257–262, https://doi.org/10.1007/Bf00027610 (1991).

Martin, G. R. The subtlety of simple eyes: the tuning of visual fields to perceptual challenges in birds. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130040, https://doi.org/10.1098/rstb.2013.0040 (2014).

Howard, I. P. & Rogers, B. J. Binocular vision and stereopsis. (Oxford University Press, UK, 1995).

Parker, A. J. Binocular depth perception and the cerebral cortex. Nat. Rev. Neurosci. 8, 379–391, https://doi.org/10.1038/nrn2131 (2007).

Nityananda, V. et al. A novel form of stereo vision in the praying mantis. Curr. Biol. 28, 588–593.e4, https://doi.org/10.1016/j.cub.2018.01.01 (2018).

Nordstrom, K., Wallen, R., Seymour, J. & Nilsson, D. A simple visual system without neurons in jellyfish larvae. Proc. Biol. Sci. 270, 2349–2354, https://doi.org/10.1098/rspb.2003.250 (2003).

Gehring, W. J. The evolution of vision. Wiley Interdiscip. Rev. Dev. Biol. 3, 1–40, https://doi.org/10.1002/wdev.96 (2014).

Gavelis, G. S. et al. Eye-like ocelloids are built from different endosymbiotically acquired components. Nature 523, 204–207, https://doi.org/10.1038/nature14593 (2015).

Arendt, D., Hausen, H. & Purschke, G. The “division of labour” model of eye evolution. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 2809–2817, https://doi.org/10.1098/rstb.2009.010 (2009).

Inoue, T., Hoshino, H., Yamashita, T., Shimoyama, S. & Agata, K. Planarian shows decision-making behavior in response to multiple stimuli by integrative brain function. Zool. Lett. 1, 7, https://doi.org/10.1186/s40851-014-0010-z (2015).

MacRae, E. K. Localization of porphyrin fluorescence in planarians. Science 134, 331–332, https://doi.org/10.1126/science.134.3475.331 (1961).

Kanzaki, R., Sugi, N. & Shibuya, T. Self-generated zigzag turning of Bombyx mori males during pheromone-mediated upwind walking. Zool. Sci. 9, 515–527 (1992).

Swaney, K. F., Huang, C. H. & Devreotes, P. N. Eukaryotic chemotaxis: a network of signaling pathways controls motility, directional sensing, and polarity. Annu. Rev. Biophys. 39, 265–289, https://doi.org/10.1146/annurev.biophys.093008.131228 (2010).

Crenshaw, H. C. Orientation by helical motion—III. Microorganisms can orient to stimuli by changing the direction of their rotational velocity. Bull. Math. Biol. 55, 231–255, https://doi.org/10.1007/BF02460304 (1993).

McHenry, M. & Strother, J. The kinematics of phototaxis in larvae of the ascidian Aplidium constellatum. Mar. Biol. 142, 173–184, https://doi.org/10.1007/s00227-002-0929-z (2003).

Katsukura, Y., Ando, H., David, C. N., Grimmelikhuijzen, C. J. & Sugiyama, T. Control of planula migration by LWamide and RFamide neuropeptides in Hydractinia echinata. J. Exp. Biol. 207, 1803–1810, https://doi.org/10.1242/jeb.00974 (2004).

Jekely, G. et al. Mechanism of phototaxis in marine zooplankton. Nature 456, 395–399, https://doi.org/10.1038/nature07590 (2008).

Pearl, R. The movements and reactions of freshwater planarians: a study in animal behaviour. Q. J. Microsc. Sci. 46, 509–714 (1903).

Boring, E. G. Notes on the negative reaction under light-adaptation in the planarian. J. Anim. Behav. 2, 229, https://doi.org/10.1037/h0075688 (1912).

Newmark, P. A. & Sanchez Alvarado, A. Bromodeoxyuridine specifically labels the regenerative stem cells of planarians. Dev. Biol. 220, 142–153, https://doi.org/10.1006/dbio.2000.964 (2000).

Viaud, G. Recherches expérimentales sur le phototropisme des planaires. Le signe primaire positif et la polarité tropistique. L’année Phycol. 49, 175–221, https://doi.org/10.3406/psy.1948.835 (1948).

Paskin, T. R., Jellies, J., Bacher, J. & Beane, W. S. Planarian phototactic assay reveals differential behavioral responses based on wavelength. PLoS One 9, e114708, https://doi.org/10.1371/journal.pone.0114708 (2014).

Nishimura, K., Kitamura, Y., Taniguchi, T. & Agata, K. Analysis of motor function modulated by cholinergic neurons in planarian Dugesia japonica. Neuroscience 168, 18–30, https://doi.org/10.1016/j.neuroscience.2010.03.038 (2010).

Tazaki, A. et al. Neural network in planarian revealed by an antibody against planarian synaptotagmin homologue. Biochem. Biophys. Res. Commun. 260, 426–432, https://doi.org/10.1006/bbrc.1999.093 (1999).

Nishimura, K. et al. Characterization of tyramine beta-hydroxylase in planarian Dugesia japonica: cloning and expression. Neurochem. Int. 53, 184–192, https://doi.org/10.1016/j.neuint.2008.09.00 (2008).

Nishimura, K. et al. Reconstruction of dopaminergic neural network and locomotion function in planarian regenerates. Dev. Neurobiol. 67, 1059–1078, https://doi.org/10.1002/dneu.20377 (2007).