Convolution Systems on Discrete Abelian Groups as a Unifying Strategy in Sampling Theory
Tóm tắt
A regular sampling theory in a multiply generated unitary invariant subspace of a separable Hilbert space $${\mathcal {H}}$$ is proposed. This subspace is associated to a unitary representation of a countable discrete abelian group G on $${\mathcal {H}}$$. The samples are defined by means of a filtering process which generalizes the usual sampling settings. The multiply generated setting allows to consider some examples where the group G is non-abelian as, for instance, crystallographic groups. Finally, it is worth to mention that classical average or pointwise sampling in shift-invariant subspaces are particular examples included in the followed approach.
Tài liệu tham khảo
Aldroubi, A.: Oblique proyections in atomic spaces. Proc. Am. Math. Soc. 124, 2051–2060 (1996)
Aldroubi, A., Sun, Q., Tang, W.S.: Convolution, average sampling, and a Calderon resolution of the identity for shift-invariant spaces. J. Fourier Anal. Appl. 11(2), 215–244 (2005)
Barbieri, D., Hernández, E., Parcet, J.: Riesz and frame systems generated by unitary actions of discrete groups. Appl. Comput. Harmon. Anal. 39(3), 369–399 (2015)
Bhandari, A., Zayed, A.I.: Shift-invariant and sampling spaces associated with the fractional Fourier transform domain. IEEE Trans. Signal Process. 60(4), 1627–1637 (2012)
Cabrelli, C., Paternostro, V.: Shift-invariant spaces on LCA groups. J. Funct. Anal. 258, 2034–2059 (2010)
de Boor, C., DeVore, R.A., Ron, A.: On the construction of multivariate pre-wavelets. Constr. Approx. 9, 123–166 (1993)
Christensen, O.: An Introduction to Frames and Riesz Bases, 2nd edn. Birkhäuser, Boston (2016)
Fernández-Morales, H.R., García, A.G., Hernández-Medina, M.A., Muñoz-Bouzo, M.J.: Generalized sampling: from shift-invariant to \(U\)-invariant spaces. Anal. Appl. 13(3), 303–329 (2015)
Folland, G.B.: A Course in Abstract Harmonic Analysis. CRC Press, Boca Raton (1995)
García, A.G., Pérez-Villalón, G.: Dual frames in \({L}^2(0,1)\) connected with generalized sampling in shift-invariant spaces. Appl. Comput. Harmon. Anal. 20(3), 422–433 (2006)
García, A.G., Pérez-Villalón, G.: Multivariate generalized sampling in shift-invariant spaces and its approximation properties. J. Math. Anal. Appl. 355, 397–413 (2009)
García, A.G., Muñoz-Bouzo, M.J.: Sampling-related frames in finite \(U\)-invariant subspaces. Appl. Comput. Harmon. Anal. 39, 173–184 (2015)
García, A.G., Hernández-Medina, M.A., Pérez-Villalón, G.: Sampling in unitary invariant subspaces associated to LCA groups. Results Math. 72, 1725–1745 (2017)
García, A.G., Pérez-Villalón, G.: Riesz bases associated with regular representations of semi-direct product groups. Banach J. Math. Anal. 14(1), 41–62 (2020)
Goodman, T.N., Lee, S.L., Tang, W.S.: Wavelet bases for a set of commuting unitary operators. Adv. Comput. Math. 1(1), 109–126 (1993)
Jia, R.Q., Micchelli, C.A.: Using the refinement equations for the construction of pre-waveles II: Powers of two. In: Laurent, P.J., Méhauté, Le, Schumaker, L.L. (eds.) Curves and Surfaces, pp. 209–246. Academic Press, Boston (1991)
Kang, S., Kwon, K.H.: Generalized average sampling in shift-invariant spaces. J. Math. Anal. Appl. 377, 70–78 (2011)
Pérez-Villalón, G.: Discrete convolution operators and Riesz systems generated by actions of abelian groups. Accepted in Ann. Funct. Anal., arXiv:1904.10457v1 (2019)
Pohl, V., Boche, H.: \(U\)-invariant sampling and reconstruction in atomic spaces with multiple generators. IEEE Trans. Signal Process. 60(7), 3506–3519 (2012)
Shang, Z., Sun, W., Zhou, X.: Vector sampling expansions in shift-invariant subspaces. J. Math. Anal. Appl. 325, 898–919 (2007)
Zhou, X., Sun, W.: On the sampling theorem for wavelet subspaces. J. Fourier Anal. Appl. 5(4), 347–354 (1999)