Convex hull property and maximum principle for finite element minimisers of general convex functionals

Springer Science and Business Media LLC - Tập 124 - Trang 685-700 - 2013
Lars Diening1, Christian Kreuzer2, Sebastian Schwarzacher1
1Mathematisches Institut der Universität München, München, Germany
2Fakultät für Mathematik, Ruhr-Universität Bochum, Bochum, Germany

Tóm tắt

The convex hull property is the natural generalization of maximum principles from scalar to vector valued functions. Maximum principles for finite element approximations are often crucial for the preservation of qualitative properties of the respective physical model. In this work we develop a convex hull property for $$\mathbb{P }_1$$ conforming finite elements on simplicial non-obtuse meshes. The proof does not resort to linear structures of partial differential equations but directly addresses properties of the minimiser of a convex energy functional. Therefore, the result holds for very general nonlinear partial differential equations including e.g. the $$p$$ -Laplacian and the mean curvature problem. In the case of scalar equations the introduce techniques can be used to prove standard discrete maximum principles for nonlinear problems. We conclude by proving a strong discrete convex hull property on strictly acute triangulations.

Tài liệu tham khảo

Belenki, L., Diening, L., Kreuzer, C.: Optimality of an adaptive finite element method for the \(p\)-Laplacian equation. IMA J. Numer. Anal. 32(2), 484–510 (2012) Bildhauer, M., Fuchs, M.: Partial regularity for a class of anisotropic variational integrals with convex hull property. Asymptot. Anal. 32(3–4), 293–315 (2002) Brandts, J.H., Korotov, S., Křížek, M.: The discrete maximum principle for linear simplicial finite element approximations of a reaction-diffusion problem. Linear Algebra Appl. 429(10), 2344–2357 (2008) Ciarlet, P.G., Raviart, P.-A.: Maximum principle and uniform convergence for the finite element method. Comput. Methods Appl. Mech. Eng. 2, 17–31 (1973) Drăgănescu, A., Dupont, T.F., Scott, L.R.: Failure of the discrete maximum principle for an elliptic finite element problem. Math. Comp. 74(249), 1–23 (2005) Diening, L., Kreuzer, C.: Convergence of an adaptive finite element method for the p-Laplacian equation. SIAM J. Numer. Anal. 46(2), 614–638 (2008) Diening, L., Rŭžička, M.: Interpolation operators in Orlicz-Sobolev spaces. Numer. Math. 107(1), 107–129 (2007) D’Ottavio, A., Leonetti, F., Musciano, C.: Maximum principle for vector-valued mappings minimizing variational integrals. Atti Sem. Mat. Fis. Univ. Modena 46, 677–683 (1998) Fierro, F., Veeser, A.: On the a posteriori error analysis for equations of prescribed mean curvature. Math. Comp. 72(244), 1611–1634 (2003) Huang, W.: Discrete maximum principle and a delaunay-type mesh condition for linear finite element approximations of two-dimensional anisotropic diffusion problems. NM-TMA 4(3), 319–334 (2011) Jüngel, A., Unterreiter, A.: Discrete minimum and maximum principles for finite element approximations of non-monotone elliptic equations. Numer. Math. 99(3), 485–508 (2005) Karátson, J., Korotov, S.: Discrete maximum principles for finite element solutions of nonlinear elliptic problems with mixed boundary conditions. Numer. Math. 99(4), 669–698 (2005) Korotov, S., Křížek, M.: Global and local refinement techniques yielding nonobtuse tetrahedral partitions. Comput. Math. Appl. 50(7), 1105–1113 (2005) Korotov, S., Křížek, M.: Nonobtuse local tetrahedral refinements towards a polygonal face/interface. Appl. Math. Lett. 24(6), 817–821 (2011) Korotov, S., Křížek, M., Neittaanmäki, P.: Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle. Math. Comp. 70(233), 107–119 (2001) Křížek, M., Qun, L.: On diagonal dominance of stiffness matrices in 3D. East-West J. Numer. Math. 3(1), 59–69 (1995) Letniowski, F.W.: Three-dimensional Delaunay triangulations for finite element approximations to a second-order diffusion operator. SIAM J. Sci. Statist. Comput. 13(3), 765–770 (1992) Li, X., Huang, W.: An anisotropic mesh adaptation method for the finite element solution of heterogeneous anisotropic diffusion problems. J. Comput. Phys. 229(21), 8072–8094 (2010) Ruas Santos, V.: On the strong maximum principle for some piecewise linear finite element approximate problems of nonpositive type. J. Fac. Sci. Univ. Tokyo Sect. IA Math 29(2), 473–491 (1982) Strang, G., Fix, G. J.: An analysis of the finite element method, Prentice-Hall Inc., Prentice-Hall Series in Automatic Computation, Englewood Cliffs (1973) Wang, J., Zhang, R.: Maximum principles for P1-conforming finite element approximations of quasi-linear second order elliptic equations. SIAM J. Numer. Anal. 50(2), 626–642 (2012)