Conversion of NO in NO/N2, NO/O2/N2, NO/C2H4/N2 and NO/C2H4/O2/N2 Systems by Dielectric Barrier Discharge Plasmas

Plasma Chemistry and Plasma Processing - Tập 25 - Trang 371-386 - 2005
Ai-Min Zhu1,2, Qi Sun1, Jin-Hai Niu1, Yong Xu1,2, Zhi-Min Song1
1Laboratory of Plasma Physical Chemistry, Dalian University of Technology, Dalian, China
2State Key Laboratory of Material Modification by Ion, Electron and Laser Beams, Dalian University of Technology, Dalian, China

Tóm tắt

An experimental study on the conversion of NO in the NO/N2, NO/O2/N2, NO/C2H4/N2 and NO/C2H4/O2/N2 systems has been carried out using dielectric barrier discharge (DBD) plasmas at atmospheric pressure. In the NO/N2 system, NO decomposition to N2 and O2 is the dominating reaction; NO conversion to NO2 is less significant. O2 produced from NO decomposition was detected by an on-line mass spectrometer. With the increase of NO initial concentration, the concentration of O2 produced decreases at 298 K, but slightly increases at 523 K. In the NO/O2/N2 system, NO is mainly oxidized to NO2, but NO conversion becomes very low at 523 K and over 1.6% of O2. In the NO/C2H4/N2 system, NO is reduced to N2 with about the same NO conversion as that in the NO/N2 system but without NO2 formation. In the NO/C2H4/O2/N2 system, the oxidation of NO to NO2 is dramatically promoted. At 523 K, with the increase of the energy density, NO conversion increases rapidly first, and then almost stabilizes at 93–91% of NO conversion with 61–55% of NO2 selectivity in the energy density range of 317–550 J L−1. It finally decreases gradually at high energy density. A negligible amount of N2O is formed in the above four systems. Of the four systems studied, NO conversion and NO2 selectivity of the NO/C2H4/O2/N2 system are the highest, and NO/O2/C2H4/N2 system has the lowest electrical energy consumption per NO molecule converted.

Tài liệu tham khảo

B. M. Penetrante R. M. Brusasco B. T. Merritt et al. (1999) Pure Appl. Chem. 71 1829 B. M. Penetrante M. C. Hsiao B. T. Merritt et al. (1995) IEEE Trans. Plasma Sci. 23 679 J. Luo S. L. Suib M. Marquez et al. (1998) J. Phys. Chem. A. 102 7954 Occurrence Handle10.1021/jp982013t M A. Jani K. Toda K. Takaki et al. (2000) J. Phys. D: Appl. Phys. 33 3078 Occurrence Handle10.1088/0022-3727/33/23/311 H. M. Lee M. B. Chang S. C. Yang (2003) J. Environ. Eng. 129 800 Occurrence Handle10.1061/(ASCE)0733-9372(2003)129:9(800) C. R. McLarnou V. K. Mathur (2000) Ind. Eng. Chem. Res. 39 2779 Occurrence Handle10.1021/ie990754q Z. Chen V. K. Mathur (2002) Ind. Eng. Chem. Res. 41 2082 Occurrence Handle10.1021/ie010459h H. Miessner K.-P. Francke R. Rudolph (2002) Appl. Catal. B: Environ. 36 53 Occurrence Handle10.1016/S0926-3373(01)00280-6 H.-H. Shin W.-S. Yoon (2003) Plasma Chem. Plasma Process 23 681 Occurrence Handle10.1023/A:1025595318945 F. Fresnet G. Baravian L. Magne et al. (2000) Appl. Phys. Lett. 77 4118 Occurrence Handle10.1063/1.1332413 B. M. Penetrante M. C. Hsiao B. T. Merritt et al. (1996) Appl. Phys. Lett. 68 3719 Occurrence Handle10.1063/1.115984 M. A. A. Clyne I. S. McDermid (1975) J. Chem. Soc. Faraday Trans. l 71 2189 Occurrence Handle10.1039/f19757102189 W. Tsang J. T. Herron (1991) J. Phys. Chem. Ref. Data. 20 609 P. O. Wennberg J. G. Anderson D. K. Weisenstein (1994) J. Geophys. Res. 99 18839 Occurrence Handle10.1029/94JD01823 R. Atkinson D. L. Baulch R. A. Cox et al. (1992) J. Phys. Chem. Ref. Data 21 1125 W. Tsang R. F. Hampson (1986) J. Phys. Chem. Ref. Data 15 1087 U. C. Sridharan F. Kaufman (1983) Chem. Phys. Lett. 102 45 Occurrence Handle10.1016/0009-2614(83)80655-1 D. L. Baulch C. J. Cobos R. A. Cox et al. (1992) J. Phys. Chem. Ref. Data 21 411 R. Atkinson D. L. Baulch R. A. Cox et al. (1997) J. Phys. Chem. Ref. Data. 26 521 C. C. Hsu A. M. Mebel M. C. Lin (1996) J. Chem. Phys. 105 2346 Occurrence Handle10.1063/1.472083 D. L. Baulch C. J. Cobos R. A. Cox et al. (1994) J. Phys. Chem. Ref. Data 23 847 P. D. Lightfoot R. A. Cox J. N. Crowley et al. (1992) Atmos. Environ. Part. A. 26 1805 Occurrence Handle10.1016/0960-1686(92)90423-I Konnov AA., Proc. 28th Int. Symp, Combus., Edinburgh, UK, p. 317 (2000). O. Kajimoto T. Fueno (1979) Chem. Phys. Lett. 64 445 Occurrence Handle10.1016/0009-2614(79)80218-3 Y. S Mok and Nam I., Chem. Eng. Technol, 22, 527 (1999). Q. Sun, A.M. Zhu, X. F. Yang et al., Chem. Commun. 1418 (2003).