Convergent numerical schemes for the compressible hyperelastic rod wave equation

Springer Science and Business Media LLC - Tập 122 - Trang 1-59 - 2012
David Cohen1, Xavier Raynaud2
1Mathematisches Institut, Universität Basel, Basel, Switzerland
2Center of Mathematics for Applications, University of Oslo, Oslo, Norway

Tóm tắt

We propose a fully discretised numerical scheme for the hyperelastic rod wave equation on the line. The convergence of the method is established. Moreover, the scheme can handle the blow-up of the derivative which naturally occurs for this equation. By using a time splitting integrator which preserves the invariants of the problem, we can also show that the scheme preserves the positivity of the energy density.

Tài liệu tham khảo

Artebrant R., Schroll H.J.: Numerical simulation of Camassa–Holm peakons by adaptive upwinding. Appl. Numer. Math. 56(5), 695–711 (2006) Benjamin T.B., Bona J.L., Mahony J.J.: Model equations for long waves in nonlinear dispersive systems. Philos. Trans. R. Soc. Lond. Ser. A 272(1220), 47–78 (1972) Camassa R., Holm D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71(11), 1661–1664 (1993) Camassa R., Huang J., Lee L.: On a completely integrable numerical scheme for a nonlinear shallow-water wave equation. J. Nonlinear Math. Phys. 12(suppl. 1), 146–162 (2005) Camassa R., Huang J., Lee L.: Integral and integrable algorithms for a nonlinear shallow-water wave equation. J. Comput. Phys. 216(2), 547–572 (2006) Coclite G.M., Holden H., Karlsen K.H.: Global weak solutions to a generalized hyperelastic-rod wave equation. SIAM J. Math. Anal. 37(4), 1044–1069 (2005) (electronic) Coclite G.M., Karlsen K.H., Risebro N.H.: A convergent finite difference scheme for the Camassa–Holm equation with general H 1 initial data. SIAM J. Numer. Anal. 46(3), 1554–1579 (2008) (electronic) Coclite G.M., Karlsen K.H., Risebro N.H.: A convergent finite difference scheme for the Camassa–Holm equation with general H 1 initial data. SIAM J. Numer. Anal. 46(3), 1554–1579 (2008) Coclite G.M., Karlsen K.H., Risebro N.H.: An explicit finite difference scheme for the Camassa–Holm equation. Adv. Differ. Equ. 13(7–8), 681–732 (2008) Cohen D., Owren B., Raynaud X.: Multi-symplectic integration of the Camassa–Holm equation. J. Comput. Phys. 227(11), 5492–5512 (2008) Cohen D., Raynaud X.: Geometric finite difference schemes for the generalized hyperelastic-rod wave equation. J. Comput. Appl. Math. 235(8), 1925–1940 (2011) Constantin A., Strauss W.A.: Stability of a class of solitary waves in compressible elastic rods. Phys. Lett. A 270(3–4), 140–148 (2000) Dai H.-H.: Exact travelling-wave solutions of an integrable equation arising in hyperelastic rods. Wave Motion 28(4), 367–381 (1998) Hairer E., Lubich C., Wanner G.: Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations. Springer Series in Computational Mathematics, vol. 31. Springer, Berlin (2002) Henry D.: Compactly supported solutions of the Camassa–Holm equation. J. Nonlinear Math. Phys. 12(3), 342–347 (2005) Holden H., Raynaud X.: Convergence of a finite difference scheme for the Camassa–Holm equation. SIAM J. Numer. Anal 44(4), 1655–1680 (2006) (electronic) Holden H., Raynaud X.: A convergent numerical scheme for the Camassa–Holm equation based on multipeakons. Discret. Contin. Dyn. Syst. 14(3), 505–523 (2006) Holden H., Raynaud X.: Global conservative solutions of the generalized hyperelastic-rod wave equation. J. Differ. Equ. 233(2), 448–484 (2007) Holden, H., Raynaud, X.: A numerical scheme based on multipeakons for conservative solutions of the Camassa–Holm equation. In: Hyperbolic problems: theory, numerics, applications, pp. 873–881. Springer, Berlin (2008) Kalisch H., Raynaud X.: Convergence of a spectral projection of the Camassa–Holm equation. Numer. Methods Partial Differ. Equ. 22(5), 1197–1215 (2006) Lenells J.: Traveling waves in compressible elastic rods. Discrete Contin. Dyn. Syst. Ser. B 6(1), 151–167 (2006) (electronic) Matsuo T., Yamaguchi H.: An energy-conserving galerkin scheme for a class of nonlinear dispersive equations. J. Comput. Phys. 228(12), 4346–4358 (2009) Raynaud, X.: On a shallow water wave equation. Ph.D Thesis (2006) Xu Y., Shu C.-W.: A local discontinuous Galerkin method for the Camassa–Holm equation. SIAM J. Numer. Anal. 46(4), 1998–2021 (2008) Yin Z.: On the Cauchy problem for a nonlinearly dispersive wave equation. J. Nonlinear Math. Phys. 10(1), 10–15 (2003)