Controlling a chaotic resonator by means of dynamic track control

Complexity - Tập 21 Số 1 - Trang 370-378 - 2015
Chunni Wang1, Runtong Chu1, Jun Ma1
1Department of Physics, Lanzhou University of Technology, Lanzhou 730050, China

Tóm tắt

Josephson junction oscillators can generate chaotic signals with a wide frequency spectrum. An improved scheme of Lyapunov functions is proposed to control chaotic resonators of this type and forces them to converge to an arbitrary selected target signal. A changeable gain coefficient is introduced into the Lyapunov function, and the controllers are designed analytically. The controllers operate automatically when the output series are deviated from the target orbit synchronously. A resistive‐capacitive‐inductive‐shunted Josephson junction in chaotic parameter region is investigated in our studies, and power consumption is estimated from the dimensionless model. It is found that the power consumption of controller is dependent on the amplitude and/or angular frequency of the external target signal to be tracked. For example, larger power costs are observed when the target signal is in larger amplitude and/or angular frequency. The numerical results are consistent with the analytical discussion. © 2014 Wiley Periodicals, Inc. Complexity 21: 370–378, 2015

Từ khóa


Tài liệu tham khảo

10.1016/S0370-1573(99)00096-4

10.1016/S0370-1573(02)00137-0

10.1142/9789814291705_0014

10.1016/j.physrep.2010.12.003

10.1016/S0375-9601(02)00146-9

10.1088/0143-0807/26/4/003

10.1007/s11071-011-0046-y

10.1103/PhysRevE.77.055201

10.1007/s11071-010-9663-0

Ma J., 2013, Realization of synchronization between hyperchaotic systems by using a scheme of intermittent linear coupling, Acta Phys Sin, 62, 170502, 10.7498/aps.62.170502

10.1016/j.chaos.2005.04.056

10.1007/s11071-008-9417-4

10.1007/s11071-014-1260-1

10.1103/PhysRevE.70.016204

10.1088/0143-0807/26/1/021

10.1016/j.chaos.2005.03.045

10.1016/j.chaos.2005.08.013

10.1007/s11071-009-9626-5

10.1007/s11071-009-9554-4

10.1016/j.cnsns.2010.12.030

10.1016/j.cnsns.2005.04.003

10.1016/j.cnsns.2007.09.002

10.1016/j.cnsns.2010.02.012

10.1016/j.cnsns.2011.01.025

10.1007/s11071-009-9523-y

10.1002/cplx.21497

10.1007/s11071-013-1053-y

10.1016/S0026-2692(99)00150-0

10.1016/j.compeleceng.2004.06.001

10.1016/j.physleta.2005.02.044

10.1016/j.neucom.2004.09.001

10.1016/j.physd.2008.01.030

10.1016/j.jfranklin.2007.06.005

10.1016/j.chaos.2007.09.088

10.1016/j.simpat.2010.12.003

10.1016/j.cnsns.2010.11.030

10.1002/cplx.21545

10.1002/cplx.21459

10.1002/cplx.21533

10.1002/cplx.21502

10.1049/ij-ecs.1979.0031

10.1063/1.359334

10.1103/PhysRevE.53.405

10.1063/1.334687

10.1088/0034-4885/59/8/001

10.1063/1.368113

10.1109/81.940189

10.1016/j.chaos.2005.04.017

10.1016/j.chaos.2006.04.058

10.1103/PhysRevE.82.011914

10.1016/j.chaos.2005.09.035

10.1016/j.physc.2007.11.012

10.1016/j.physc.2010.05.009

10.1016/j.physc.2010.02.039