Controlled pendulum on a movable base
Tóm tắt
Tài liệu tham khảo
Yu.G. Martynenko and A.M. Formal’skii, “Problems of Control ofUnstable Systems,” Uspekhi Mekh. 3(2), 71–135 (2005).
Yu. G. Martynenko and A. M. Formal’skii, “A Control of the Longitudinal Motion of a Single-Wheel Robot on an Uneven Surface,” Izv. Ross. Akad. Nauk. Teor. Sist. Upr., No. 4, 165–173 (2005) [J. Comp. Syst. Sci. Int. (Engl. Transl.) 44 (4), 662–670 (2005)].
F. L. Chernousko, L. D. Akulenko, and B. N. Sokolov, Control of Oscillations (Nauka, Moscow, 1980) [in Russian].
A. M. Formal’skii, Displacement of Anthropomorphic Mechanisms (Nauka, Moscow, 1982) [in Russian].
T. G. Strizhak, Methods for Studying ‘Pendulum’-Type Dynamical Systems (Nauka, Alma-Ata, 1981) [in Russian].
N. G. Chetaev, Stability of Motion (Izdat. AN SSSR, Moscow, 1962) [in Russian].
B. A. Smol’nikov, Problems ofMechanics and Robots Optimization (Nauka, Moscow, 1991) [in Russian].
A.M. Formal’skii, Controllability and Stability of Systems with Restricted Resources (Nauka, Moscow, 1974) [in Russian].
E. B. Lee and L. Markus, Foundations of Optimal Control Theory (Wiley, New York, 1967; Nauka, Moscow, 1972).
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, TheMathematical Theory of Optimal Processes (Nauka, Moscow, 1983; Gordon & Breach Sci. Publ., New York, 1986).
S. A. Reshmin and F. L. Chernousko, “Optimal in the Speed of Response Synthesis of Control in Problems of Swaying and Damping of Nonlinear Pendulum Oscillations,” in Proc. 9th Chetaev Conf. “Analytical Mechanics, Stability, and Control of Motion”, Vol. 3 (Irkutsk, 2007), pp. 179–196 [in Russian].
R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 1 (Gostekhizdat, Moscow-Leningrad, 1951) [in Russian].
F. R. Gantmakher, Theory of Matrices (Nauka, Moscow, 1967) [in Russian].