Controlled growth of 1D and 2D ZnO nanostructures on 4H-SiC using Au catalyst
Nanoscale Research Letters - 2014
Tóm tắt
A perfect control of nanostructure growth is a prerequisite for the development of electronic and optoelectronic device/systems. In this article, we demonstrate the growth of various ZnO-derived nanostructures, including well-ordered arrays of high aspect ratio single crystalline nanowires with preferred growth direction along the [0001] axis, nanowalls, and hybrid nanowire-nanowall structures. The growths of the various ZnO nanostructures have been carried out on SiC substrates in a horizontal furnace, using Au thin film as catalyst. From experimental observations, we have ascribed the growth mechanisms of the different ZnO nanostructures to be a combination of catalytic-assisted and non-catalytic-assisted vapor–liquid-solid (VLS) processes. We have also found that the different ZnO nanoarchitectures' material evolution is governed by a Zn cluster drift effects on the SiC surface mainly driven by growth temperature. Au thin film thickness, growth time, and temperature are the parameters to optimize in order to obtain the different ZnO nanoarchitectures.
Từ khóa
Tài liệu tham khảo
Ng HT, Han J, Yamada T, Nguyen P, Chen YP, Meyyappan M: Single crystal nanowire vertical surround-gate field-effect transistor. Nano Lett 2004, 4(7):1247. 10.1021/nl049461z
Wang X, Wang X, Zhou J, Song J, Liu J, Xu N, Wang ZL: Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett 2006, 6(12):2768. 10.1021/nl061802g
Wang XD, Zhou J, Lao CS, Song JH, Xu NS, Wang ZL: In situ field emission of density-controlled ZnO nanowire arrays. Adv Mater 2007, 19(12):1627. 10.1002/adma.200602467
Zhang Q, Dandeneau CS, Zhou X, Cao G: ZnO nanostructures for dye-sensitized solar cells. Adv Mater 2009, 21(41):4087. 10.1002/adma.200803827
Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P: Room-temperature ultraviolet nanowire nanolasers. Science 2001, 292(5523):1897–1899. 10.1126/science.1060367
Tsukazaki A, Ohtomo A, Onuma T, Ohtani M, Makino T, Sumiya M, Ohtani K, Chichibu FS, Fuke S, Segawa Y, Ohno H, Koinuma H, Kawasaki M: Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nat Mater 2004, 4(1):42.
Wang ZL, Song J: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312(5771):242–246. 10.1126/science.1124005
Wang X, Song J, Liu J, Wang ZL: Direct-current nanogenerator driven by ultrasonic waves. Science 2007, 316(5821):102–105. 10.1126/science.1139366
Xu S, Qin Y, Xu C, Wei Y, Yang R, Wang ZL: Self-powered nanowire devices. Nat Nanotechnol 2010, 5(5):366. 10.1038/nnano.2010.46
Kumar B, Lee KY, Park H-K, Chae SJ, Lee YH, Kim S-W: Controlled growth of semiconducting nanowire, nanowall, and hybrid nanostructures on graphene for piezoelectric nanogenerators. ACS Nano 2011, 5(5):4197. 10.1021/nn200942s
Yang Y, Guo W, Pradel KC, Zhu G, Zhou Y, Zhang Y, Hu Y, Lin L, Wang ZL: Pyroelectric nanogenerators for harvesting thermoelectric energy. Nano Lett 2012, 12(6):2833. 10.1021/nl3003039
Ng HT, Li J, Smith MK, Nguyen P, Cassell A, Han J, Meyyappan M: Growth of epitaxial nanowires at the junctions of nanowalls. Science 2003, 300(5623):1249. 10.1126/science.1082542
Wang X, Ding Y, Li Z, Song J, Wang ZL: Single-crystal mesoporous ZnO thin films composed of nanowalls. J Phys Chem C 2009, 113(5):1791. 10.1021/jp809358m
Kim S-W, Park H-K, Yi M-S, Park N-M, Park J-H, Kim S-H, Maeng S-L, Choi C-J, Moon S-E: Epitaxial growth of ZnO nanowall networks on GaN/sapphire substrates. Appl Phys Lett 2007, 90(3):033107. 10.1063/1.2430918
Brewster MM, Lu M-Y, Lim SK, Smith MJ, Zhou X, GradecÌŒak S: The growth and optical properties of ZnO nanowalls. J Phys Chem Lett 2011, 2(15):1940.
Pung S-Y, Choy K-L, Hou X: Tip-growth mode and base-growth mode of Au-catalyzed zinc oxide nanowires using chemical vapor deposition technique. J Cryst Growth 2010, 312(14):2049. 10.1016/j.jcrysgro.2010.03.035
Kim DS, Scholz R, Gösele U, Zacharias M: Gold at the root or at the tip of ZnO nanowires: a model. Small 2008, 4(10):1615. 10.1002/smll.200800060
Mai W, Gao P, Lao C, Wang ZL, Sood AK, Polla DL, Soprano MB: Vertically aligned ZnO nanowire arrays on GaN and SiC substrates. Chem Phys Lett 2008, 460(1–3):253–256.
Shi J, Grutzik S, Wang X: Zn cluster drifting effect for the formation of ZnO 3D nanoarchitecture. ACS Nano 2009, 3(6):1594. 10.1021/nn900388z
Dalal SH, Baptista DL, Teo KBK, Lacerda RG, Jefferson DA, Milne WI: Controllable growth of vertically aligned zinc oxide nanowires using vapour deposition. Nanotechnology 2006, 17(19):4811. 10.1088/0957-4484/17/19/005
Zhu G, Zhou Y, Wang S, Yang R, Ding Y, Wang X, Bando Y, Wang Z: Synthesis of vertically aligned ultra-long ZnO nanowires on heterogeneous substrates with catalyst at the root. Nanotechnology 2012, 23(5):055604. 10.1088/0957-4484/23/5/055604
Wongchoosuk C, Subannajui K, Menzel A, Burshtein IA, Tamir S, Lifshitz Y, Zacharias M: Controlled synthesis of ZnO nanostructures: the role of source and substrate temperatures. J Phys Chem C 2010, 115(3):757.
Cao BQ, Matsumoto T, Matsumoto M, Higashihata M, Nakamura D, Okada T: ZnO nanowalls grown with high-pressure PLD and their applications as field emitters and UV detectors. J Phys Chem C 2009, 113(25):10975. 10.1021/jp902603s
Joo J, Chow BY, Prakash M, Boyden ES, Jacobson JM: Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis. Nat Mater 2011, 10(8):596.
Yin Z, Wu S, Zhou X, Huang X, Zhang Q, Boey F, Zhang H: Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells. Small 2010, 6(2):307. 10.1002/smll.200901968
Mao SS, Chen X: Selected nanotechnologies for renewable energy applications. Int J Energy Res 2007, 31(6–7):619.
Psychoyios VN, Nikoleli G-P, Tzamtzis N, Nikolelis DP, Psaroudakis N, Danielsson B, Israr MQ, Willander M: Potentiometric cholesterol biosensor based on ZnO nanowalls and stabilized polymerized lipid film. Electroanalysis 2013, 25(2):367. 10.1002/elan.201200591
Ruffino F, Canino A, Grimaldi MG, Giannazzo F, Bongiorno C, Roccaforte F, Raineri V: Self-organization of gold nanoclusters on hexagonal SiC and SiO2 surfaces. J Appl Phys 2007, 101(6):619–636.
Okamoto H, Massalski TB: The Au-Zn (gold-zinc) system. Bull Alloy Phase Diagr 1989, 10(1):59–69. 10.1007/BF02882177
Kar A, Low K-B, Oye M, Stroscio MA, Dutta M, Nicholls A, Meyyappan M: Investigation of nucleation mechanism and tapering observed in ZnO nanowire growth by carbothermal reduction technique. Nanoscale Res Lett 2011, 6: 3.