Control of peripheral T‐cell tolerance and autoimmunity via the CTLA‐4 and PD‐1 pathways

Immunological Reviews - Tập 224 Số 1 - Trang 166-182 - 2008
Brian T. Fife1, Jeffrey A. Bluestone2
1Department of Medicine, UCSF Diabetes Center, University of California, San Francisco, CA 94113, USA.
2University of California at San Francisco

Tóm tắt

Summary: Classically, the CD28/cytotoxic T‐lymphocyte antigen‐4 (CTLA‐4) and B7 families of cell surface molecules regulate complex signaling pathways that profoundly affect T‐cell responses. The recent identification and characterization of additional CD28 and B7 family members including programmed death‐1 (PD‐1), programmed death ligand‐1 (PD‐L1) (B7‐H1), and PD‐L2 (B7‐DC) has added to the complexity and greater appreciation of how surface molecules control T‐cell activation and peripheral tolerance. CD28/B7 interactions mediate co‐stimulation and significantly enhance peripheral T‐cell responses. CTLA‐4, in contrast, interacting with the same B7 molecules, results in decreased T‐lymphocyte activity and regulates the immune response. Similarly, PD‐1 interactions with PD‐L1 and PD‐L2 downmodulate T‐cell immune responses. Despite these similarities, the regulatory roles of the CTLA‐4 and PD‐1 pathways are distinct. This may be due, at least in part, to the differential expression patterns of the CTLA‐4 and PD‐1 ligands both temporally and spatially. This article examines the role of CTLA‐4 and PD‐1 in limiting autoreactivity and establishing peripheral self‐tolerance with the hypothesis that CTLA‐4 signals are required early in the lymph node during initiation of an immune response and PD‐1 pathways act late at the tissue sites to limit T‐cell activity.

Từ khóa


Tài liệu tham khảo

10.1016/0165-5728(93)90234-P

10.1006/jaut.1996.0052

Salomon B, 2001, Complexities of CD28/B7, CTLA-4 costimulatory pathways in autoimmunity and transplantation, 19, 225

10.1016/1074-7613(95)90161-2

10.1016/1074-7613(94)90092-2

10.1034/j.1600-6143.2001.010108.x

10.1097/00007890-200003150-00040

10.4049/jimmunol.165.12.6849

Green JM, 1995, T cell costimulation through the CD28 receptor, Proc Assoc Am Physicians, 107, 41

10.1146/annurev.immunol.23.021704.115611

10.1016/1074-7613(94)90071-X

10.1084/jem.183.6.2541

10.1093/intimm/8.5.773

10.1073/pnas.200348397

10.1084/jem.20021646

10.1084/jem.194.5.677

10.1126/science.270.5238.985

10.1016/1074-7613(95)90125-6

10.1002/eji.200425143

10.1038/ni1160

10.1084/jem.192.7.1027

10.1016/S0165-2478(02)00142-6

10.1038/85330

10.4049/jimmunol.170.3.1257

10.4049/jimmunol.169.10.5538

10.1084/jem.20022125

10.1073/pnas.0931259100

10.4049/jimmunol.167.3.1245

10.4049/jimmunol.174.6.3408

10.1126/science.291.5502.319

10.1016/S1074-7613(00)80089-8

10.1073/pnas.0505497102

10.1084/jem.20022119

10.1046/j.1399-0039.2003.00136.x

10.1002/art.20280

10.1038/ng1020

Ferreiros‐Vidal I, 2004, Association of PDCD1 with susceptibility to systemic lupus erythematosus, evidence of population-specific effects, 50, 2590

10.1007/s10875-006-9048-9

10.1002/art.20040

10.1002/ana.20514

Hayashi M, 2008, Association of an A/C single nucleotide polymorphism in programmed cell death‐ligand 1 (PD‐L1) gene with Graves' disease in Japanese patients, Eur J Endocrinol, 124, 277

10.1189/jlb.0105050

10.1016/j.it.2006.02.001

10.1002/9780470515525.ch7

10.1006/jaut.1994.1055

10.1073/pnas.93.5.2131

10.1006/smim.1994.1005

10.1146/annurev.immunol.14.1.233

10.1093/intimm/6.5.769

10.1038/369327a0

10.1073/pnas.91.7.2834

10.1084/jem.179.3.1071

10.1084/jem.183.6.2533

10.1002/j.1460-2075.1992.tb05481.x

Carter L, 2002, PD‐1, PD-L inhibitory pathway affects both CD4(+) and CD8(+) T cells and is overcome by IL-2, 32, 634

10.4049/jimmunol.173.2.945

10.1002/eji.200324228

10.1084/jem.191.5.891

Keir ME, 2005, Programmed death‐1 (PD‐1), PD-ligand 1 interactions inhibit TCR-mediated positive selection of thymocytes, 175, 7372

10.4049/jimmunol.171.9.4574

10.1016/S0952-7915(97)80081-7

Jenkins MK, 1987, T‐cell unresponsiveness in vivo and in vitro, fine specificity of induction and molecular characterization of the unresponsive state, 95, 113

10.1084/jem.165.2.302

Nishimura H, 2001, PD‐1, an inhibitory immunoreceptor involved in peripheral tolerance, 22, 265

Chikuma S, 2003, CTLA‐4 and tolerance, the biochemical point of view, 28, 241

Bennett F, 2003, Program death‐1 engagement upon TCR activation has distinct effects on costimulation and cytokine‐driven proliferation, attenuation of ICOS, IL-4, and IL-21, but not CD28, IL-7, and IL-15 responses, 170, 711

10.1146/annurev.immunol.26.021607.090331

10.1016/j.febslet.2004.07.083

10.1073/pnas.231486598

10.1073/pnas.0708767104

Saunders PA, 2005, PD‐L2, PD-1 involvement in T cell proliferation, cytokine production, and integrin-mediated adhesion, 35, 3561

10.1124/mi.2.4.205

10.4049/jimmunol.162.3.1270

10.1126/science.282.5397.2263

10.1128/MCB.25.21.9543-9553.2005

10.1038/nature01621

10.1016/S1074-7613(04)00110-4

10.1126/science.280.5365.905

10.1159/000067596

10.1126/science.1079490

10.1038/nature05543

10.1038/ni1437

10.1038/83784

Tang Q, 2008, The Foxp3+ regulatory T cell, a jack of all trades, master of regulation, 9, 239

10.4049/jimmunol.179.8.5211

10.1038/nm924

10.1084/jem.20061577

10.4049/jimmunol.171.12.6929

10.1111/j.1600-0897.2006.00435.x

10.1084/jem.20050019

10.1084/jem.20051776

10.1002/1521-4141(200204)32:4<972::AID-IMMU972>3.0.CO;2-M

Anderson MS, 2005, The NOD mouse, a model of immune dysregulation, 23, 447

Chatenoud L., 2003, CD3‐specific antibody‐induced active tolerance, from bench to bedside, 3, 123

10.1126/science.271.5253.1272

10.1126/science.271.5253.1276

10.1016/j.immuni.2004.08.005

10.1038/ni1134

10.1038/nature02238

10.1126/science.1070051

10.1038/ni1210

10.1016/j.immuni.2007.12.016

10.1126/science.1131078

10.1038/nature05115

10.1038/nature04444

10.1084/jem.20061800

10.1016/j.it.2007.12.002

10.1084/jem.20061496

10.1038/nm1482

10.4049/jimmunol.176.11.6473

Burstein HJ, 1992, Aqueous antigens induce in vivo tolerance selectively in IL‐2‐ and IFN‐gamma‐producing (Th1) cells, J Immunol, 148, 3687, 10.4049/jimmunol.148.12.3687

10.1038/ni1443

10.1084/jem.182.2.459

10.1016/S0165-5728(97)00108-2

10.1084/jem.187.3.427

10.1016/S1074-7613(01)00259-X

Falcone M, 1998, B lymphocytes are crucial antigen‐presenting cells in the pathogenic autoimmune response to GAD65 antigen in nonobese diabetic mice, J Immunol, 161, 1163, 10.4049/jimmunol.161.3.1163

10.4049/jimmunol.164.9.4433

10.1172/JCI27856

Hwang KW, 2002, Cutting edge, targeted ligation of CTLA-4 in vivo by membrane-bound anti-CTLA-4 antibody prevents rejection of allogeneic cells, 169, 633

Bluestone JA, 2006, CTLA4Ig, bridging the basic immunology with clinical application, 24, 233

10.1016/0167-5699(90)90085-N

10.1126/science.1323143

10.1111/j.1600-6143.2005.00749.x

Lakkis FG, 1997, Blocking the CD28‐B7 T cell costimulation pathway induces long term cardiac allograft acceptance in the absence of IL‐4, J Immunol, 158, 2443, 10.4049/jimmunol.158.5.2443

10.1038/15256

10.1038/15260

10.1126/science.7520604

10.1038/ni846

10.1038/381434a0

10.1084/jem.178.5.1801

Dumont FJ., 2004, Technology evaluation, abatacept, Bristol-Myers Squibb, 6, 318

10.1056/NEJMoa050524

Moreland LW, 2002, Costimulatory blockade in patients with rheumatoid arthritis, a pilot, dose-finding, double-blind, placebo-controlled clinical trial evaluating CTLA-4Ig and LEA29Y eighty-five days after the first infusion, 46, 1470

10.1056/NEJMoa035075

Weinblatt M, 2006, Safety of the selective costimulation modulator abatacept in rheumatoid arthritis patients receiving background biologic and nonbiologic disease‐modifying antirheumatic drugs, a one-year randomized, placebo-controlled study, 54, 2807

Kremer JM, 2005, Treatment of rheumatoid arthritis with the selective costimulation modulator abatacept, twelve-month results of a phase iib, double-blind, randomized, placebo-controlled trial, 52, 2263

Rozelle AL, 2007, Efficacy results from pivotal clinical trials with abatacept, Clin Exp Rheumatol, 25, S30

Tang Q, 2003, Cutting edge, CD28 controls peripheral homeostasis of CD4+CD25+ regulatory T cells, 171, 3348

10.1016/j.trim.2007.01.005

Urbani S, 2008, Restoration of HCV‐specific T cell functions by PD‐1/PD‐L1 blockade in HCV infection, effect of viremia levels and antiviral treatment, 48, 548

10.1128/JVI.80.7.3532-3540.2006

10.1084/jem.20071949

Riley JL, 2007, The road to recovery, translating PD-1 biology into clinical benefit, 28, 48

10.1007/s00109-003-0430-2

Thompson RH, 2004, Costimulatory B7‐H1 in renal cell carcinoma patients, indicator of tumor aggressiveness and potential therapeutic target, 101, 17174

10.1158/1078-0432.CCR-06-2599

10.1182/blood-2007-11-123141

10.1002/eji.200635978

10.1111/j.1365-2567.2007.02766.x

10.1097/01.tp.0000250757.69384.79

10.4049/jimmunol.173.8.4919

10.1158/0008-5472.1089.65.3

10.1182/blood-2006-10-051482

10.1002/ijc.21795

10.4049/jimmunol.174.4.1888

10.1634/stemcells.2007-0321

10.1016/j.clim.2005.10.017

10.1172/JCI19210