Control of human gait stability through foot placement

Journal of the Royal Society Interface - Tập 15 Số 143 - Trang 20170816 - 2018
Sjoerd M. Bruijn1, Jaap H. van Dieën2
1Department of Human Movement Science, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, van der Boechorststraat 9, 1081 BT Amsterdam, The Netherlands.
2Department of Human Movement Science, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, van der Boechorststraat 9, 1081 BT Amsterdam, The Netherlands [email protected].

Tóm tắt

During human walking, the centre of mass (CoM) is outside the base of support for most of the time, which poses a challenge to stabilizing the gait pattern. Nevertheless, most of us are able to walk without substantial problems. In this review, we aim to provide an integrative overview of how humans cope with an underactuated gait pattern. A central idea that emerges from the literature is that foot placement is crucial in maintaining a stable gait pattern. In this review, we explore this idea; we first describe mechanical models and concepts that have been used to predict how foot placement can be used to control gait stability. These concepts, such as for instance the extrapolated CoM concept, the foot placement estimator concept and the capture point concept, provide explicit predictions on where to place the foot relative to the body at each step, such that gait is stabilized. Next, we describe empirical findings on foot placement during human gait in unperturbed and perturbed conditions. We conclude that humans show behaviour that is largely in accordance with the aforementioned concepts, with foot placement being actively coordinated to body CoM kinematics during the preceding step. In this section, we also address the requirements for such control in terms of the sensory information and the motor strategies that can implement such control, as well as the parts of the central nervous system that may be involved. We show that visual, vestibular and proprioceptive information contribute to estimation of the state of the CoM. Foot placement is adjusted to variations in CoM state mainly by modulation of hip abductor muscle activity during the swing phase of gait, and this process appears to be under spinal and supraspinal, including cortical, control. We conclude with a description of how control of foot placement can be impaired in humans, using ageing as a primary example and with some reference to pathology, and we address alternative strategies available to stabilize gait, which include modulation of ankle moments in the stance leg and changes in body angular momentum, such as rapid trunk tilts. Finally, for future research, we believe that especially the integration of consideration of environmental constraints on foot placement with balance control deserves attention.

Từ khóa


Tài liệu tham khảo

10.1098/rsif.2012.0999

10.1152/physrev.1992.72.1.33

10.1007/978-1-349-09148-5_31

10.1152/jn.00730.2011

10.1016/0006-8993(86)91233-3

10.1016/0966-6362(96)82849-9

10.1177/027836499000900206

10.1126/science.1107799

10.1177/02783649922066655

Kim M, 2013, Stabilization of a three-dimensional limit cycle walking model through step-to-step ankle control, IEEE Int. Conf. Rehabil. Robot, 2013, 6650437

10.1098/rsif.2014.0958

10.1371/journal.pone.0073597

10.1242/jeb.129338

10.1016/0021-9290(84)90080-0

10.1123/kr.2017-0053

10.1016/S0021-9290(00)00101-9

10.1016/j.jbiomech.2016.07.015

10.1016/j.gaitpost.2006.04.013

10.1242/jeb.042572

10.1007/s00221-013-3655-5

10.1016/0021-9290(85)90042-9

Kajita S Tani K. 1991 Study of dynamic biped locomotion on rugged terrain-derivation and application of the linear inverted pendulum mode. In Proc. of 1991 IEEE Int. Conf. on Robotics and Automation Sacramento CA 9–11 April pp. 1405–1411. New York NY: IEEE.

Pratt J Carff J Drakunov S Goswami A. 2006 Capture point: a step toward humanoid push recovery. In Proc. of 2006 6th IEEE-RAS Int. Conf. on Humanoid Robots Genova Italy 4–6 December pp. 200–207. New York NY: IEEE.

10.1016/S0021-9290(96)00165-0

10.1152/jn.00266.2005

10.1016/j.jbiomech.2015.06.004

10.1016/j.jbiomech.2004.03.025

10.1016/j.jelekin.2007.04.003

10.1016/j.jbiomech.2011.12.027

10.1016/j.clinbiomech.2013.10.010

10.1115/1.2815334

10.1115/1.4000193

10.1016/j.ridd.2013.02.011

10.1098/rspb.2006.3637

10.1016/j.humov.2007.04.003

10.1016/j.humov.2007.08.003

10.1016/S0021-9290(01)00169-5

10.1115/1.1427703

10.1177/0278364912452673

10.1098/rspb.2001.1761

10.1016/j.gaitpost.2017.03.021

10.1109/TBME.2007.901031

10.1016/j.jbiomech.2008.06.039

10.1016/j.jbiomech.2013.07.005

10.1016/j.jbiomech.2003.06.002

10.1016/j.gaitpost.2011.01.007

10.1016/j.gaitpost.2010.02.001

10.1098/rsbl.2014.0405

10.1098/rsos.160627

10.1016/j.jbiomech.2017.12.026

10.1016/j.jbiomech.2016.11.059

10.1007/s002210050738

10.1007/s00221-010-2424-y

10.1007/s00221-013-3748-1

10.1016/0021-9290(93)90027-C

10.1016/j.jbiomech.2014.10.027

10.1016/j.gaitpost.2007.11.008

10.1152/jn.00138.2014

10.1016/S0966-6362(02)00197-2

10.1007/s00221-014-3885-1

10.1152/jn.00131.2009

10.1016/j.jbiomech.2010.02.003

10.1111/j.1469-7793.1999.0931s.x

10.1152/jn.01260.2003

10.1097/00003677-200507000-00002

10.1007/s00221-005-2364-0

10.1097/00001756-200507130-00013

10.1152/jn.00764.2006

10.1016/j.gaitpost.2011.02.017

10.1007/s00221-001-0962-z

10.1152/jn.00551.2015

10.1523/JNEUROSCI.6472-10.2011

10.1152/jn.1999.81.3.1355

10.1038/415429a

10.3758/BF03199297

10.1152/jn.00516.2003

10.1016/j.jbiomech.2013.03.007

10.1073/pnas.0607687103

10.1016/j.humov.2007.05.005

10.1007/s00221-014-4185-5

10.1152/jn.00434.2015

10.1152/jn.00103.2014

10.1152/jn.00867.2015

10.3200/JMBR.38.2.118-125

10.1152/japplphysiol.00621.2011

10.1152/jn.00843.2012

10.1007/s00221-004-1854-9

10.1002/mus.22265

10.4085/1062-6050-49.5.07

10.1161/STROKEAHA.110.610360

10.1016/j.neubiorev.2015.08.002

10.3389/fnhum.2017.00170

10.1093/gerona/glr214

10.1016/j.gaitpost.2012.11.008

10.3389/fnagi.2014.00104

10.1152/jn.00744.2012

10.3389/fnhum.2015.00593

10.1016/j.neuroimage.2017.07.013

10.1111/j.1532-5415.1997.tb00946.x

10.1016/j.gaitpost.2008.02.009

10.1016/j.apmr.2013.07.020

Sale P, 2013, The relation between Parkinson's disease and ageing. Comparison of the gait patterns of young Parkinson's disease subjects with healthy elderly subjects, Eur. J. Phys. Rehabil. Med., 49, 161

10.1016/j.gaitpost.2014.07.013

10.1016/j.jbiomech.2016.03.011

10.1177/0898264307299308

10.1016/j.gaitpost.2012.03.005

10.1016/j.jbiomech.2015.12.047

10.1016/j.clinbiomech.2017.02.013

10.1007/s002210050867

Moraes R, 2004, Strategies and determinants for selection of alternate foot placement during human locomotion: influence of spatial and temporal constraints, Exp. Brain Res., 159, 1

10.1152/jn.00044.2006

10.1098/rspb.2013.0700

10.1037/a0033101

10.1016/j.jbiomech.2005.12.016

10.3389/fnbot.2017.00062

10.1186/s12984-015-0027-3

10.1016/j.jbiomech.2016.07.016

Fu XY Kuo AD. 2017 Contributions to lateral walking balance from trunk rotation and foot placement. In XXVI Congress of the Intl. Society of Biomechanics. Brisbane Australia 23–27 July.

10.1016/j.cub.2018.03.008