Contribution of the normal component to the thermal resistance of turbulent liquid helium

Lidia Saluto1, David Jou2, Maria Stella Mongiovı̀3
1Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici (DEIM), Università degli Studi di Palermo, Palermo, Italy
2Departament de Física, Universitat Autònoma de Barcelona, Bellaterra, Spain
3Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica, Università degli Studi di Palermo, Palermo, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Mendelsohn K.: Liquid Helium, vol. XV. Springer, Berlin (1956)

van Sciver S.: Helium Cryogenics. 2nd edn. Springer, Berlin (2012)

Donnelly R.J.: Quantized Vortices in Helium II. Cambridge University Press, Cambridge (1991)

Barenghi, C.F., Sergeev, Y.A.: Vortices and turbulence at very low temperatures, CISM International Centre for Mechanical Sciences, vol. 501. Springer, Berlin, p 280 (2008)

Nemirovskii S.K., Fiszdon W.: Chaotic quantized vortices and hydrodynamic processes in superfluid helium. Rev. Mod. Phys. 67, 37 (1995). doi: 10.1103/RevModPhys.67.37

Nemirovskii S.K.: Quantum turbulence: theoretical and numerical problems. Phys. Rep. 524, 85 (2013). doi: 10.1016/j.physrep.2012.10.005

Tsubota M., Kobayashi M., Takeuchi H.: Quantum hydrodynamics. Phys. Rep. 522, 191 (2012). doi: 10.1016/j.physrep.2012.09.007

Barenghi C.F.: Laminar, turbulent, or doubly turbulent?. Physics 3, 60 (2010). doi: 10.1103/Physics.3.60

Guo W., Cahn S.B., Nikkel J.A., Vinen W.F., McKinsey D.N.: Visualization study of counterflow in superfluid Helium-4 using metastable helium molecules. Phys. Rev. Lett. 105, 045301 (2010). doi: 10.1103/PhysRevLett.105.045301

Galantucci L., Barenghi C.F., Sciacca M., Quadrio M., Luchini P.: Turbulent superfluid profiles in a counterflow channel. J. Low Temp. Phys. 162, 354 (2011). doi: 10.1007/s10909-010-0266-4

Galantucci, L., Sciacca, M.: Turbulent superfluid profiles and vortex density waves in a counterflow channel. Acta Appl. Math. 122, 407–418 (2012). doi: 10.1007/s10440-012-9752-9

Galantucci, L., Sciacca, M.: Non-classical velocity statistics in counterflow quantum turbulence. Acta Appl. Math. 132, 273–281 (2014). doi: 10.1007/s10440-014-9902-3

Hanninen R., Baggaley A.W.: Vortex filament method as a tool for computational visualization of quantum turbulence. Proc Natl Acad Sci USA 111(Sup.1), 4667–4674 (2014). doi: 10.1073/pnas.1312535111

Guo W., McKinsey D.N., Marakov A., Thompson K.J., Ihas G.G., Vinen W.F.: Visualization technique for determining the structure functions of normal-fluid turbulence in superfluid helium-4. J. Low Temp. Phys. 171, 497–503 (2013). doi: 10.1007/s10909-012-0708-2

Landau L.D.: The theory of superfluidity of He II. J. Phys. 5, 71 (1941)

Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Pergamon Press, Oxford (1987)

Saluto L., Mongiovì M.S., Jou D.: Longitudinal counterflow in turbulent liquid helium: velocity profile of the normal component. Z. Angew. Math. Phys. 65, 531–548 (2014). doi: 10.1007/s00033-013-0372-7

Martin K.P., Tough J.T.: Evolution of superfluid turbulence in thermal counterflow. Phys. Rev. B 27, 2788 (1983). doi: 10.1103/PhysRevB.27.2788

Jou D., Casas-Vàzquez J., Criado-Sancho M.: Thermodynamics of Fluids Under Flow. Springer, Berlin (2011)

Muller I., Ruggeri T.: Rational Extended Thermodynamics. Springer, New York (1998)

Mongiovì M.S.: Extended irreversible thermodynamics of liquid helium II: boundary condition and propagation of fourth sound. Phys. A 292, 55 (2001). doi: 10.1016/S0378-4371(00)00537-9

Mongiovì M.S., Jou D.: Thermodynamical derivation of a hydrodynamical model of inhomogeneous superfluid turbulence. Phys. Rev. B 75, 024507 (2007). doi: 10.1103/PhysRevB.75.024507

Mongiovì M.S.: Extended irreversible thermodynamics of liquid helium II. Phys. Rev. B 48, 6276 (1993). doi: 10.1103/PhysRevB.48.6276

Hall H.E., Vinen W.F.: The rotation of liquid helium II. I. the theory of mutual friction in uniformly rotating helium II. Proc. R. Soc. A 238, 204 (1956). doi: 10.1098/rspa.1956.0214

Ardizzone L., Gaeta G., Mongiovì M.S.: Wave propagation in anisotropic turbulent superfluids. Z. Angew. Math. Phys. 64, 1571–1586 (2013). doi: 10.1007/s00033-013-0308-2

Jou D., Mongiovì M.S., Sciacca M.: Hydrodynamic equations of anisotropic, polarized and inhomogeneous superfluid vortex tangles. Phys. D 240, 249 (2011). doi: 10.1016/j.physd.2010.09.001

Donnelly R.J., Barenghi C.F.: The observed properties of liquid helium at the saturated vapor pressure. J. Phys. Chem. 27, 1217 (1998). doi: 10.1063/1.556028

Struchtrup H.: Macroscopic transport equations for rarefied gas flows. Springer, Berlin (2005)

Tabeling P.: Introduction to Microfluidics. Oxford University Press, Oxford (2005)

Sellitto A., Alvarex F.X., Jou D.: Second law of thermodynamics and phonon-boundary conditions in nanowires. J. Appl. Phys. 107, 064302 (2010). doi: 10.1063/1.3309477

Alvarex F.X., Jou D., Sellitto A.: Pore-size dependence of the thermal conductivity of porous silicon: a phonon hydrodynamic approach. Appl. Phys. Lett. 97, 033103 (2010). doi: 10.1063/1.3462936

Dong Y., Cao B.-Y., Guo Z.-Y.: Size dependent thermal conductivity of Si nanosystems based on phonon gas dynamics. Phys. E 56, 256–262 (2014). doi: 10.1016/j.physe.2013.10.006

Greywall D.S.: Thermal-conductivity measurement in liquid 4 He below 0.7 K. Phys. Rev. B 23, 2152–2168 (1981)

Childers R.K., Tough J.T.: Helium II thermal counterflow: temperature and pressure-difference data and analysis in terms of the Vinen theory. Phys. Rev. B 13(3), 1040 (1976). doi: 10.1103/PhysRevB.13.1040

Geurst J.A.: Hydrodynamics of quantum turbulence in He II: Vinen’s equation derived from energy and impulse of vortex tangle. Phys. B 154, 327–343 (1989). doi: 10.1016/0921-4526(89)90167-1

Sciacca, M., Sellitto, A., Jou, D.: Transition to ballistic regime for heat transport in helium II. Phys. Lett. A 378, 2471–2477 (2014)

Sciacca, M., Jou, D., Mongiovì, M.S.: Effective thermal conductivity of helium II: from Landau to Gorter-Mellink regimes. Z. Angew. Math. Phys. (2014). doi: 10.1007/s00033-014-0479-5

Tsubota M., Araki T., Vinen F.: Diffusion of an inhomogeneous vortex tangle. Phys. B 224, 329 (2003)

Saluto L., Mongiovì M.S., Jou D.: Vortex diffusion and vortex-line hysteresis in radial quantum turbulence. Phys. B 440C, 99–103 (2014). doi: 10.1016/j.physb.2014.01.041

Saluto L., Jou D., Mongiovì M.S.: Thermodynamic approach to vortex production and diffusion in inhomogeneous superfluid turbulence. Phys. A 406, 272–280 (2014). doi: 10.1016/j.physa.2014.03.062

Jou D., Sciacca M., Mongiovì M.S.: Vortex dynamics in rotating counterflow and plane couette and poiseuille turbulence in superfluid helium. Phys. Rev. B 78, 024524 (2008). doi: 10.1103/PhysRevB.78.024524

Nemirovskii S.K.: Diffusion of inhomogeneous vortex tangle and decay of superfluid turbulence. Phys. Rev. B 81, 064512 (2010). doi: 10.1103/PhysRevB.81.064512

Mongiovì M.S., Jou D.: Generalization of Vinen’s equation including transition to superfluid turbulence. J. Phys. Condens. Matter 17, 4423–4440 (2005). doi: 10.1088/0953-8984/17/28/003

Mongiovì M.S., Jou D., Sciacca M.: Energy and temperature of superfluid turbulent vortex tangles. Phys. Rev. B 75, 214514 (2007). doi: 10.1103/PhysRevB.75.214514

Khalatnikov I.M.: An Introduction to the Theory of Superfluidity. Benjamin, New York (1965)

Sciacca, M.: Non-equilibrium thermodynamics analysis of rotating counterflow superfluid turbulence. Math. Comput. Model. 51(2), 91–99 (2010). doi: 10.1016/j.mcm.2009.09.002