Đóng góp của melanoidin từ thực phẩm xử lý nhiệt tới lượng phenolic và khả năng chống oxi hóa trong chế độ ăn uống của người Brazil

Springer Science and Business Media LLC - Tập 57 - Trang 3119-3131 - 2020
Genilton Alves1, Patricia Xavier1, Raphael Limoeiro1, Daniel Perrone1
1Laboratório de Bioquímica Nutricional e de Alimentos, Biochemistry Department, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

Tóm tắt

Trong nghiên cứu này, chúng tôi đã đặt mục tiêu nghiên cứu, xác định và ước lượng lượng melanoidin và các hợp chất phenolic liên kết hàng ngày, cũng như khả năng chống oxi hóa của thực phẩm bị xử lý nhiệt thường xuyên tiêu thụ trong chế độ ăn uống của người Brazil. Trong số hai mươi ba mẫu thực phẩm Brazil được xử lý nhiệt, hàm lượng melanoidin dao động từ 1,6 (dulce de leche) đến 21,4 g/100 g (cà phê hòa tan). Cân nhắc đến melanosaccharide, maté rang cho thấy hàm lượng phenolic liên kết cao nhất (6415,1 µg/100 mg), trong khi ngũ cốc nguyên hạt ăn sáng (229,3 µg/100 mg) nổi bật giữa các melanoprotein. Khả năng chống oxi hóa của melanoidin có sự tương quan mạnh với các hợp chất phenolic liên kết của chúng (r > 0,8522, p < 0,0001). Chúng tôi ước tính rằng mỗi ngày, dân số Brazil tiêu thụ tới 10,7 g melanoidin, trong đó bia là nguồn góp phần chính (44%), theo sau là các sản phẩm ngũ cốc (36%) và cà phê (17%). Người Brazil hấp thụ tới 26,0 mg phenolic liên kết mỗi ngày, chủ yếu từ melanoidin trong cà phê (75%) và bia (13%). Do đó, lượng phenolic tiêu thụ của người Brazil bị đánh giá thấp tới 7%. Hơn nữa, melanoidin đóng góp tới 21% khả năng chống oxi hóa của chế độ ăn uống Brazil.

Từ khóa

#melanoidin #thực phẩm xử lý nhiệt #hợp chất phenolic #khả năng chống oxi hóa #chế độ ăn uống Brazil

Tài liệu tham khảo

Abozed SS, El-kalyoubi M, Abdelrashid A, Salama MF (2014) Total phenolic contents and antioxidant activities of various solvent extracts from whole wheat and bran. Ann Agric Sci 59(1):63–67. https://doi.org/10.1016/j.aoas.2014.06.009 Alves G, Perrone D (2015) Breads enriched with guava flour as a tool for studying the incorporation of phenolic compounds in bread melanoidins. Food Chem 185:65–74. https://doi.org/10.1016/j.foodchem.2015.03.110 Borrelli RC, Fogliano V (2005) Bread crust melanoidins as potential prebiotic ingredients. Mol Nutr Food Res 49(7):673–678. https://doi.org/10.1002/mnfr.200500011 Corrêa VG, Peralta RM, Koehnlein EA, Locateli G, Tureck C (2015) Estimate of consumption of phenolic compounds by Brazilian population. Rev Nutr 28(2):185–196. https://doi.org/10.1590/1415-52732015000200007 Delgado-Andrade C, Rufián-Henares JA, Morales FJ (2005) Assessing the antioxidant activity of melanoidins from coffee brews by different antioxidant methods. J Agric Food Chem 53:7832–7836. https://doi.org/10.1021/jf0512353 Dilis V, Trichopoulou A (2010) Antioxidant intakes and food sources in Greek adults. J Nutr 140(7):1274–1279. https://doi.org/10.3945/jn.110.121848 Echavarría AP, Pagán J, Ibarz A (2012) Melanoidins formed by maillard reaction in food and their biological activity. Food Eng Rev 4(4):203–223. https://doi.org/10.1007/s12393-012-9057-9 Fogliano V, Morales FJ (2011) Estimation of dietary intake of melanoidins from coffee and bread. Food Funct 2(2):117–123. https://doi.org/10.1039/c0fo00156b Gerhäuser C, Becker H (2009) Phenolic compounds in beer. In: Preedy VR (ed) Beer in health and disease prevention, 1st edn. Academic Press, Burlington, pp 124–144 Heck CI, De Mejia EG (2007) Yerba mate tea (Ilex paraguariensis): a comprehensive review on chemistry, health implications, and technological considerations. J Food Sci. https://doi.org/10.1111/j.1750-3841.2007.00535.x Helou C, Jacolot P, Niquet-Léridon C, Gadonna-Widehem P, Tessier FJ (2016) Maillard reaction products in bread: a novel semi-quantitative method for evaluating melanoidins in bread. Food Chem 190:904–911. https://doi.org/10.1016/j.foodchem.2015.06.032 Instituto Brasileiro de Geografia e Estatística (2011) The 2008–2009 Brazilian Household Budget Survey—POF 2008–2009. https://www.ibge.gov.br. Accessed 13 Aug 18 Koehnlein EA, Bracht A, Nishida VS, Peralta RM (2014) Total antioxidant capacity and phenolic content of the Brazilian diet: a real scenario. Int J Food Sci Nutr 65(3):293–298. https://doi.org/10.3109/09637486.2013.879285 Lindenmeier M, Faist V, Hofmann T (2002) Structural and functional characterization of pronyl-lysine, a novel protein modification in bread crust melanoidins showing in vitro antioxidative and phase I/II enzyme modulating activity. J Agric Food Chem 50(24):6997–7006. https://doi.org/10.1021/jf020618n Maillard M-N, Soum M-H, Boivin P, Berset C (1996) Antioxidant activity of barley and malt: relationship with phenolic content. Lebensm-Wiss Technol 29(1):238–244 Marques V, Farah A (2009) Chlorogenic acids and related compounds in medicinal plants and infusions. Food Chem 113(4):1370–1376. https://doi.org/10.1016/j.foodchem.2008.08.086 Miranda AM, Steluti J, Fisberg RM, Marchioni DM (2016) Dietary intake and food contributors of polyphenols in adults and elderly adults of Sao Paulo: a population-based study. Br J Nutr 115(6):1061–1070. https://doi.org/10.1017/S0007114515005061 Moreira ASP, Nunes FM, Simões C, Maciel E, Domingues P, Domingues MRM, Coimbra MA (2017) Transglycosylation reactions, a main mechanism of phenolics incorporation in coffee melanoidins: inhibition by Maillard reaction. Food Chem 227:422–431. https://doi.org/10.1016/j.foodchem.2017.01.107 Murakami ANN, Amboni RDMC, Prudêncio ES, Amante ER, Zanotta LM, Maraschin M, Petrus JCC, Teófilo RF (2011) Concentration of phenolic compounds in aqueous mate (Ilex paraguariensis A. St. Hil) extract through nanofiltration. LWT Food Sci Technol 44(10):2211–2216. https://doi.org/10.1016/j.lwt.2011.06.002 Navarro González I, Periago MJ, García Alonso FJ (2017) Estimación de la ingesta diaria de compuestos fenólicos en la población española. Revista Española de Nutrición Humana y Dietética 21(4):320. https://doi.org/10.14306/renhyd.21.4.357 Oracz J, Nebesny E, Żyżelewicz D (2018) Identification and quantification of free and bound phenolic compounds contained in the high-molecular weight melanoidin fractions derived from two different types of cocoa beans by UHPLC-DAD-ESI-HR-MSn. Food Res Int. https://doi.org/10.1016/j.foodres.2018.08.028 Pastoriza S, Rufián-Henares JA (2014) Contribution of melanoidins to the antioxidant capacity of the Spanish diet. Food Chem 164:438–445. https://doi.org/10.1016/j.foodchem.2014.04.118 Perrone D, Farah A, Donangelo CM (2012) Influence of coffee roasting on the incorporation of phenolic compounds into melanoidins and their relationship with antioxidant activity of the brew. J Agric Food Chem 60(17):4265–4275. https://doi.org/10.1021/jf205388x Quiroz-Reyes CN, Fogliano V (2018) Design cocoa processing towards healthy cocoa products: the role of phenolics and melanoidins. J Func Foods 45(January):480–490. https://doi.org/10.1016/j.jff.2018.04.031 Rivero D, Pérez-Magariño S, González-Sanjosé ML, Valls-Belles V, Codoñer P, Muñiz P (2005) Inhibition of induced DNA oxidative damage by beers: correlation with the content of polyphenols and melanoidins. J Agric Food Chem 53(9):3637–3642. https://doi.org/10.1021/jf048146v Rufián-Henares JA, De La Cueva SP (2009) Antimicrobial activity of coffee melanoidins—a study of their metal-chelating properties. J Agric Food Chem 57(2):432–438. https://doi.org/10.1021/jf8027842 Rufián-Henares JA, Morales FJ (2007) Functional properties of melanoidins: in vitro antioxidant, antimicrobial and antihypertensive activities. Food Res Int 40(8):995–1002. https://doi.org/10.1016/j.foodres.2007.05.002 Saura-Calixto F, Goñi I (2006) Antioxidant capacity of the Spanish Mediterranean diet. Food Chem 94(3):442–447. https://doi.org/10.1016/j.foodchem.2004.11.033 Stauder M, Papetti A, Mascherpa D, Schito AM, Gazzani G, Pruzzo C, Daglia M (2010) Antiadhesion and antibiofilm activities of high molecular weight coffee components against Streptococcus mutans. J Agric Food Chem 58(22):11662–11666. https://doi.org/10.1021/jf1031839 Tagliazucchi D, Verzelloni E (2014) Relationship between the chemical composition and the biological activities of food melanoidins. Food Sci Biotechnol 23(2):561–568. https://doi.org/10.1007/s10068-014-0077-5 Taş NG, Gökmen V (2016) Effect of alkalization on the Maillard reaction products formed in cocoa during roasting. Food Res Int 89:930–936. https://doi.org/10.1016/j.foodres.2015.12.021 Thorvaldsson K, Skjoldebrand C (1998) Water diffusion in bread during baking. Lebensm.-Wiss Technol 31:658–663. https://doi.org/10.1006/fstl.1998.0427 USDA (United States Department of Agriculture). Food Composition Databases. https://ndb.nal.usda.gov/ndb/. Accessed 20 Sept 18 Vignoli JA, Bassoli DG, Benassi MT (2011) Antioxidant activity, polyphenols, caffeine and melanoidins in soluble coffee: the influence of processing conditions and raw material. Food Chem 124(3):863–868. https://doi.org/10.1016/j.foodchem.2010.07.008 Witkowska AM, Zujko ME, Waśkiewicz A, Terlikowska KM, Piotrowski W (2015) Comparison of various databases for estimation of dietary polyphenol intake in the population of polish adults. Nutrients 7(11):9299–9308. https://doi.org/10.3390/nu7115464 Zhao H, Li H, Sun G, Yang B, Zhao M (2013) Assessment of endogenous antioxidative compounds and antioxidant activities of lager beers. J Sci Food Agric 93(4):910–917. https://doi.org/10.1002/jsfa.5824