Continuous liquid interface production of 3D objects

American Association for the Advancement of Science (AAAS) - Tập 347 Số 6228 - Trang 1349-1352 - 2015
John R. Tumbleston1, David Shirvanyants1, Nikita Ermoshkin1, Rima Janusziewicz2, Ashley R. Johnson3, D.Q. Kelly1, Kai Chen1, Robert K. Pinschmidt1, Jason P. Rolland1, Alexander Ermoshkin1, Edward T. Samulski1,2, Joseph M. DeSimone1,4,2
1Carbon3D Inc., Redwood City, CA 94063, USA.
2Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
3Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University.
4Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA

Tóm tắt

Fast, continuous, 3D printing

Although three-dimensional (3D) printing is now possible using relatively small and low-cost machines, it is still a fairly slow process. This is because 3D printers require a series of steps to cure, replenish, and reposition themselves for each additive cycle. Tumbleston et al. devised a process to effectively grow solid structures out of a liquid bath. The key to the process is the creation of an oxygen-containing “dead zone” between the solid part and the liquid precursor where solidification cannot occur. The precursor liquid is then renewed by the upward movement of the growing solid part. This approach made structures tens of centimeters in size that could contain features with a resolution below 100 µm.

Science , this issue p. 1349

Từ khóa


Tài liệu tham khảo

10.1126/science.1228183

H. Lipson M. Kurman Fabricated: The New World of 3D Printing (Wiley Indianapolis 2013).

10.1126/science.1226340

10.1126/scitranslmed.3004890

10.1021/ac403397r

10.1002/adma.201301036

10.1039/C4EE01426J

10.1038/nchem.1313

10.1073/pnas.1305741110

10.1021/cg5003012

10.1039/C4LC00171K

10.1126/science.1252291

10.1126/science.1211649

Bauer J. Hengsbach S. Tesari I. Schwaiger R. Kraft O. High-strength cellular ceramic composites with 3D microarchitecture. Proc. Natl. Acad. Sci. U.S.A. 111 2453–2458 (2014). 10.1073/pnas.1315147111

10.1002/adfm.201400451

I. Gibson D. W. Rosen B. Stucker Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing (Springer New York 2010).

10.1021/cr3005197

10.1021/ma1007545

P. F. Jacobs Rapid Prototyping & Manufacturing: Fundamentals of StereoLithography (Society of Manufacturing Engineers Dearborn MI 1992).

T. C. Merkel I. Pinnau R. Prabhakar B. D. Freeman Materials Science of Membranes for Gas and Vapor Separation (Wiley West Sussex UK 2006) pp. 251–270.

10.1021/ma801219w

10.1038/nmat1617

10.1021/ie071403b

10.1126/science.1182383

10.1002/adma.201303349

10.1002/adem.201400097

10.1073/pnas.1401577111

10.1002/jbm.a.30601

10.1021/la202796b