Continual updating and monitoring of clinical prediction models: time for dynamic prediction systems?
Tóm tắt
Từ khóa
Tài liệu tham khảo
Hemingway H, et al. Prognosis research strategy (PROGRESS) 1: a framework for researching clinical outcomes. BMJ. 2013;346:1–11.
Steyerberg E, et al. Prognosis research strategy (PROGRESS) 3: prognostic model research. PLoS Med. 2013;10:e1001381.
Hippisley-Cox J, Coupland C, Brindle P. Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study. BMJ. 2017;357:1–21.
Gray LJ, et al. The Leicester Risk Assessment score for detecting undiagnosed type 2 diabetes and impaired glucose regulation for use in a multiethnic UK setting. Diabet. Med. 2010;27:887–95.
Martin, G. P., Sperrin, M. & Sotgiu, G. Performance of prediction models for covid-19: the caudine forks of the external validation. Eur. Respir. J. 2020; 2003728. doi:https://doi.org/10.1183/13993003.03728-2020.
Wynants L, et al. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal. BMJ. 2020;369.
Vergouwe Y, Moons KGM, Steyerberg EW. External validity of risk models: use of benchmark values to disentangle a case-mix effect from incorrect coefficients. Am. J. Epidemiol. 2010;172:971–80.
Hickey GL, et al. Dynamic trends in cardiac surgery: why the logistic euroscore is no longer suitable for contemporary cardiac surgery and implications for future risk models. Eur. J. Cardio-thoracic Surg. 2013;43:1146–52.
Debray TPA, et al. A guide to systematic review and meta-analysis of prediction model performance. BMJ. 2017;356.
Davis SE, Lasko TA, Chen G, Siew ED, Matheny ME. Calibration drift in regression and machine learning models for acute kidney injury. J. Am. Med. Informatics Assoc. 2017;24:1052–61.
Nashef SAM, et al. European system for cardiac operative risk evaluation (EuroSCORE). Eur. J. Cardio-thoracic Surg. 1999;16:9–13.
Luijken K, et al. Changing predictor measurement procedures affected the performance of prediction models in clinical examples. J. Clin. Epidemiol. 2020;119:7–18.
van Houwelingen HC, Thorogood J. Construction, validation and updating of a prognostic model for kidney graft survival. Stat. Med. 1995;14:1999–2008.
Janssen KJM, Moons KGM, Kalkman CJ, Grobbee DE, Vergouwe Y. Updating methods improved the performance of a clinical prediction model in new patients. J. Clin. Epidemiol. 2008;61:76–86.
Debray TPA, Koffijberg H, Vergouwe Y, Moons KGM, Steyerberg EW. Aggregating published prediction models with individual participant data: a comparison of different approaches. Stat. Med. 2012;31:2697–712.
Martin GP, Mamas MA, Peek N, Buchan I, Sperrin M. A multiple-model generalisation of updating clinical prediction models. Stat. Med. 2018;37:1343–58.
Riley RD, et al. External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: opportunities and challenges. BMJ. 2016;353:27–30.
Debray TPA, Riley RD, Rovers MM, Reitsma JB, Moons KGM. Individual participant data (IPD) meta-analyses of diagnostic and prognostic modeling studies: guidance on their use. PLoS Med. 2015;12:1–12.
Martin GP, Mamas MA, Peek N, Buchan I, Sperrin M. Clinical prediction in defined populations: a simulation study investigating when and how to aggregate existing models. BMC Med. Res. Methodol. 2017;17:1.
Hippisley-Cox J, et al. Derivation and validation of QRISK, a new cardiovascular disease risk score for the United Kingdom: prospective open cohort study. Br. Med. J. 2007;335:136–41.
Hippisley-Cox J, et al. Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2. BMJ. 2008;336:1475–82.
Nashef SAM, et al. Euroscore II. Eur. J. Cardio-thoracic Surg. 2012;41:734–745.
Raftery AE, Kárný M, Ettler P. Online Prediction Under Model Uncertainty via Dynamic Model Averaging: Application to a Cold Rolling Mill. Technometrics. 2010;52(1):52–66. https://doi.org/10.1198/TECH.2009.08104.
Jenkins DA, Sperrin M, Martin GP, Peek N. Dynamic models to predict health outcomes: current status and methodological challenges. Diagnostic Progn. Res. 2018;2:23.
Hoover DR, Rice JA, Wu CO, Yang L-P. Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data. Biometrika. 1998;85:809–22.
Mccormick TH, Raftery AE, Madigan D, Burd RS. Dynamic logistic regression and dynamic model averaging for binary classification. Biometrics. 2012;68:23–30.
Su TL, Jaki T, Hickey GL, Buchan I, Sperrin M. A review of statistical updating methods for clinical prediction models. Stat Methods Med Res. 2016:1–16. https://doi.org/10.1177/0962280215626466.
Hickey GL, et al. Dynamic prediction modeling approaches for cardiac surgery. Circ. Cardiovasc. Qual. Outcomes. 2013;6:649–58.
Halabi S, et al. Updated prognostic model for predicting overall survival in first-line chemotherapy for patients with metastatic castration-resistant prostate cancer. J. Clin. Oncol. 2014;32:671–7.
Dawid, A. Present position and potential developments: some personal views: statistical theory: the prequential approach Author ( s ): A . P . Dawid Source: Journal of the Royal Statistical Society . Series A ( General ), Vol . 147 , No . 2 , The 150th Annivers. J. R. Stat. Soc. Ser. A 147, 1984 278–292.
Lenert, M. C., Matheny, M. E. & Walsh, C. G. Prognostic models will be victims of their own success, unless…. J. Am. Med. Inform. Assoc. 2019;26:1645–1650.
Friedman CP, Rubin JC, Sullivan KJ. Toward an information infrastructure for global health improvement. Yearb. Med. Inform. 2017;26:16–23.
Adibi, A., Sadatsafavi, M. & Ioannidis, J. P. A. Validation and utility testing of clinical prediction models. JAMA 2020; 2004.
Booth, S., Riley, R. D., Ensor, J., Lambert, P. C. & Rutherford, M. J. Temporal recalibration for improving prognostic model development and risk predictions in settings where survival is improving over time. Int. J. Epidemiol. 2020; 1–10. doi:https://doi.org/10.1093/ije/dyaa030.
Vergouwe Y, et al. A closed testing procedure to select an appropriate method for updating prediction models. Stat. Med. 2017;36:4529–39.