Contextuality, Pigeonholes, Cheshire Cats, Mean Kings, and Weak Values
Tóm tắt
Từ khóa
Tài liệu tham khảo
Kochen, S., Specker, E.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–87 (1967)
Aharonov, Y., Colombo, F., Popescu, S., Sabadini, I., Struppa, D.C., Tollaksen, J.: Quantum violation of the pigeonhole principle and the nature of quantum correlations. Proc. Nat. Acad. Sci. 113(3), 532–535 (2016)
Yu, S., Oh, C.: Quantum pigeonhole effect, cheshire cat and contextuality (2014). arXiv:1408.2477
Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60(14), 1351 (1988)
Aharonov, Y., Vaidman, L.: Complete description of a quantum system at a given time. J. Phys. A Math. Gen. 24(10), 2315 (1991)
Tollaksen, J.: Pre-and post-selection, weak values and contextuality. J. Phys. A Math. Theor. 40(30), 9033 (2007)
Pusey, M.F.: Anomalous weak values are proofs of contextuality. Phys. Rev. Lett. 113(20), 200401 (2014)
Aharonov, Y., Bergmann, P.G., Lebowitz, J.L.: Time symmetry in the quantum process of measurement. Phys. Rev. 134(6B), B1410 (1964)
Waegell, M., Denkmayr, T., Geppert, H., Ebner, D., Jenke, T., Hasegawa, Y., Sponar, S., Dressel, J., Tollaksen, J.: Confined contextuality in neutron interferometry: Observing the quantum pigeonhole effect (2016). arXiv:1609.06046
Cabello, A.: Experimentally testable state-independent quantum contextuality. Phys. Rev. Lett. 101(21), 210401 (2008)
Waegell, M., Aravind, P.K., Megill, N.D., Pavičić, M.: Parity proofs of the Bell–Kochen–Specker theorem based on the 600-cell. Found. Phys. 41, 883–904 (2011)
Waegell, M., Aravind, P.K.: Parity Proofs of the Kochen–Specker theorem based on the 24 rays of Peres. Found. Phys. 41, 1786–1799 (2011)
Waegell, M., Aravind, P.K.: Parity Proofs of the Kochen–Specker theorem based on 60 complex rays in four dimensions. J. Phys. A Math. Theor. 44:505303 (2011)
Waegell, M., Aravind, P.K.: Proofs of the Kochen–Specker theorem based on a system of three qubits. J. Phys. A Math. Theor. 45, 405301 (2012)
Waegell, M., Aravind, P.K.: GHZ paradoxes based on an even number of qubits. Phys. Lett. A 377, 546–549 (2013)
Waegell, M., Aravind, P.K.: Proofs of the Kochen–Specker theorem based on the $$N$$ N -qubit Pauli group. Phys. Rev. A 88, 012102 (2013)
Waegell, M.: Nonclassical Structures within the $$N$$ N -qubit Pauli Group. Ph.D. thesis, Worcester Polytechnic Institute (2013). arXiv:1307.6264
Waegell, M.: Primitive nonclassical structures of the $$N$$ N -qubit Pauli Group. Phys. Rev. A 89(1), 012321 (2014)
Abbott, A.A., Calude, C.S., Conder, J., Svozil, K.: Strong Kochen–Specker theorem and incomputability of quantum randomness. Phys. Rev. A 86(6), 062109 (2012)
Abbott, A.A., Calude, C.S., Svozil, K.: A variant of the Kochen–Specker theorem localising value indefiniteness (2015). arXiv:1503.01985
Aharonov, Y., Popescu, S., Tollaksen, J.: A time-symmetric formulation of quantum mechanics. Phys. Today 63(11), 27–32 (2010)
Cabello, A.: No-hidden-variables proof for two spin-particles preselected and postselected in unentangled states. Phys. Rev. A 55(6), 4109 (1997)
Leifer, M., Spekkens, R.W.: Pre-and post-selection paradoxes and contextuality in quantum mechanics. Phys. Rev. Lett. 95(20), 200405 (2005)
Mermin, N.D.: Limits to quantum mechanics as a source of magic tricks: retrodiction and the Bell-Kochen–Specker theorem. Phys. Rev. Lett. 74(6), 831 (1995)
Waegell, M.: A bonding model of entanglement for $$N$$ N -qubit graph states. Int. J. Quantum Inf. 12(6), 1430005 (2014)
Hardy, L.: Quantum mechanics, local realistic theories, and Lorentz-invariant realistic theories. Phys. Rev. Lett. 68(20), 2981 (1992)
Vaidman, L., Aharonov, Y., Albert, D.Z.: How to ascertain the values of $$\sigma _x$$ σ x , $$\sigma _y$$ σ y , and $$\sigma _z$$ σ z of a spin-1/2 particle. Phys. Rev. Lett. 58(14), 1385 (1987)
Englert, B.-G., Aharonov, Y.: The mean king’s problem: prime degrees of freedom. Phys. Lett. A 284(1), 1–5 (2001)
Aravind, P.: Solution to the king’s problem in prime power dimensions. Zeitschrift Fur Naturforschung A 58(2/3), 85–92 (2003)
Yu, S., Oh, C.: State-independent proof of Kochen–Specker theorem with 13 rays. Phys. Rev. Lett. 108(3), 030402 (2012)
Cabello, A., Estebaranz, J., García-Alcaine, G.: Bell–Kochen–Specker theorem: a proof with 18 vectors. Phys. Lett. A 212(4), 183–187 (1996)
Lisoněk, P., Badziag, P., Portillo, J.R., Cabello, A.: Kochen–Specker set with seven contexts. Phys. Rev. A 89(4), 042101 (2014)
Megill, N.D., Fresl, K., Waegell, M., Aravind, P.K., Pavičić, M.: Probabilistic generation of quantum contextual sets. Phys. Lett. A 375, 3419–3424 (2011)
Waegell, M., Aravind, P.K.: Parity proofs of the Kochen–Specker theorem based on the 120-cell. Found. Phys. 44, 1085–1095 (2014)
Lisonek, P., Raussendorf, R., Singh, V.: Generalized parity proofs of the Kochen–Specker theorem (2014). arXiv:1401.3035