Tiêu thụ muối giúp cải thiện triệu chứng rối loạn chuyển hóa và thay đổi hệ vi sinh đường ruột

Springer Science and Business Media LLC - Tập 59 - Trang 3779-3790 - 2020
Moon Ho Do1, Hye-Bin Lee1, Mi-Jin Oh2, Hyunjhung Jhun2, Sang Keun Ha1, Ho-Young Park1
1Research Division of Food Functionality, Korea Food Research Institute, Wanju-gun, Republic of Korea
2Technical Assistance Center, Korea Food Research Institute, Wanju-gun, Republic of Korea

Tóm tắt

Các bệnh chuyển hóa do chế độ ăn giàu carbohydrate và/hoặc gia vị cao đang trở thành những vấn đề sức khỏe cộng đồng quan trọng. Tuy nhiên, tác động của muối đối với béo phì do chế độ ăn giàu carbohydrate vẫn chưa rõ ràng. Do đó, trong nghiên cứu này, chúng tôi đã điều tra tác động của việc tiêu thụ muối cao đối với béo phì do chế độ ăn giàu carbohydrate. Chúng tôi đã thực hiện một nghiên cứu kéo dài 12 tuần về vi khuẩn đường ruột và các thay đổi chuyển hóa trên chuột C57BL/6J được cho ăn chế độ ăn cao gạo (HRD) hoặc HRD bổ sung muối cao (HRS) thông qua phân tích 16S rRNA, thử nghiệm dung nạp glucose và insulin, chức năng hàng rào ruột, phân tích western blot và phân tích mô học. Hơn nữa, các tác động của muối đối với chuyển hóa lipid cũng được xác nhận in vitro bằng cách sử dụng tế bào 3T3-L1. Việc tiêu thụ muối cao đã giảm mức tăng trọng lượng cơ thể và mô mỡ trắng (WAT) do HRD gây ra. Ngược lại, HRS không làm đảo ngược mức tăng dung nạp glucose và kháng insulin đã quan sát. Hơn nữa, HRD đã gây ra thay đổi trong vi khuẩn đường ruột, từ đó làm suy yếu chức năng hàng rào ruột và tăng viêm trong gan. HRS đã thay đổi thành phần vi khuẩn do HRD gây ra, nhưng không cải thiện tình trạng suy giảm chức năng hàng rào ruột hoặc viêm gan. Các chế độ ăn HRS đã điều chỉnh mức tăng trong sự biểu hiện của thụ thể gamma hoạt hóa peroxisome proliferator-activated receptor-γ (PPAR-γ) và các protein liên quan đến chuyển hóa lipid do HRD gây ra. Hơn nữa, bên trong WAT, HRS đã đảo ngược sự giảm biểu hiện adiponectin và tăng biểu hiện PPAR-γ do HRD gây ra. In vitro, nồng độ NaCl cao cũng làm giảm đáng kể sự phân hóa tế bào 3T3-L1 và điều chỉnh chuyển hóa lipid mà không gây ra độc tính tế bào. Những kết quả này chỉ ra rằng việc tiêu thụ muối cao giúp cải thiện các thay đổi chuyển hóa liên quan đến chế độ ăn cao gạo, bao gồm những thay đổi trong thành phần vi sinh vật phân rã.

Từ khóa

#bệnh chuyển hóa #chế độ ăn giàu carbohydrate #muối cao #vi sinh đường ruột #bệnh béo phì #điều hòa chuyển hóa lipid

Tài liệu tham khảo

Younossi Z, Tacke F, Arrese M, Sharma BC, Mostafa I, Bugianesi E, Wong VWS, Yilmaz Y, George J, Fan J (2019) Global perspectives on non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. Hepatology 69(6):2672–2682. https://doi.org/10.1002/hep.30251 Park S, Ahn J, Lee B-K (2016) Very-low-fat diets may be associated with increased risk of metabolic syndrome in the adult population. Clin Nutr 35(5):1159–1167. https://doi.org/10.1016/j.clnu.2015.09.010 Powles J, Fahimi S, Micha R, Khatibzadeh S, Shi P, Ezzati M, Engell RE, Lim SS, Danaei G, Mozaffarian D (2013) Global, regional and national sodium intakes in 1990 and 2010: a systematic analysis of 24 h urinary sodium excretion and dietary surveys worldwide. BMJ Open 3(12):e003733. https://doi.org/10.1136/bmjopen-2013-003733 Song S, Lee JE, Song WO, Paik H-Y, Song Y (2014) Carbohydrate intake and refined-grain consumption are associated with metabolic syndrome in the Korean adult population. J Acad Nutr Diet 114(1):54–62. https://doi.org/10.1016/j.jand.2013.08.025 Villegas R, Liu S, Gao Y-T, Yang G, Li H, Zheng W, Shu XO (2007) Prospective study of dietary carbohydrates, glycemic index, glycemic load, and incidence of type 2 diabetes mellitus in middle-aged Chinese women. Arch Intern Med 167(21):2310–2316. https://doi.org/10.1001/archinte.167.21.2310 Yu D, Shu X-O, Li H, Xiang Y-B, Yang G, Gao Y-T, Zheng W, Zhang X (2013) Dietary carbohydrates, refined grains, glycemic load, and risk of coronary heart disease in Chinese adults. Am J Epidemiol 178(10):1542–1549. https://doi.org/10.1093/aje/kwt178 Basaranoglu M, Basaranoglu G, Bugianesi E (2015) Carbohydrate intake and nonalcoholic fatty liver disease: fructose as a weapon of mass destruction. Hepatob Surg Nutr 4(2):109–116. https://doi.org/10.3978/j.issn.2304-3881.2014.11.05 Leibowitz A, Volkov A, Voloshin K, Shemesh C, Barshack I, Grossman E (2016) Melatonin prevents kidney injury in a high salt diet-induced hypertension model by decreasing oxidative stress. J Pineal Res 60(1):48–54. https://doi.org/10.1111/jpi.12287 Jiang L, Chen Q, Wu M, Ji T, Liu S, Zhu F, Shi D (2019) Short-term high salt intake impairs hepatic mitochondrial bioenergetics and biosynthesis in SIRT3 knockout mice. Free Radical Res 53(4):387–396. https://doi.org/10.1080/10715762.2019.1580499 Dornas WC, Cardoso LM, Silva M, Machado NL, Chianca-Jr DA, Alzamora AC, Lima WG, Lagente V, Silva ME (2017) Oxidative stress causes hypertension and activation of nuclear factor-κB after high-fructose and salt treatments. Sci Rep 7:46051. https://doi.org/10.1038/srep46051 Huang P, Shen Z, Liu J, Huang Y, Chen S, Yu W, Wang S, Ren Y, Li X, Tang C (2016) Hydrogen sulfide inhibits high-salt diet-induced renal oxidative stress and kidney injury in Dahl rats. Oxid Med Cell Longev. https://doi.org/10.1155/2016/2807490 Wang G, Yeung C-k, Wong W-Y, Zhang N, Wei Y-f, Zhang J-l, Yan Y, Wong C-y, Tang J-j, Chuai M (2016) Liver fibrosis can be induced by high salt intake through excess reactive oxygen species (ROS) production. J Agric Food Chem 64(7):1610–1617. https://doi.org/10.1021/acs.jafc.5b05897 Lanaspa MA, Kuwabara M, Andres-Hernando A, Li N, Cicerchi C, Jensen T, Orlicky DJ, Roncal-Jimenez CA, Ishimoto T, Nakagawa T (2018) High salt intake causes leptin resistance and obesity in mice by stimulating endogenous fructose production and metabolism. Proc Natl Acad Sci 115(12):3138–3143. https://doi.org/10.1073/pnas.1713837115 Takagi Y, Sugimoto T, Kobayashi M, Shirai M, Asai F (2018) High-salt intake ameliorates hyperglycemia and insulin resistance in WBN/Kob-Leprfa/fa rats: a new model of type 2 diabetes mellitus. J Diabetes Res. https://doi.org/10.1155/2018/3671892 Pitynski-Miller D, Ross M, Schmill M, Schambow R, Fuller T, Flynn FW, Skinner DC (2017) A high salt diet inhibits obesity and delays puberty in the female rat. Int J Obes 41(11):1685–1692. https://doi.org/10.1038/ijo.2017.154 Huehnchen P, Boehmerle W, Endres M (2019) High salt diet ameliorates functional, electrophysiological and histological characteristics of murine spontaneous autoimmune polyneuropathy. Neurobiol Dis 124:240–247. https://doi.org/10.1016/j.nbd.2018.11.017 Wang L, Li P, Tang Z, Yan X, Feng B (2016) Structural modulation of the gut microbiota and the relationship with body weight: compared evaluation of liraglutide and saxagliptin treatment. Sci Rep 6:33251. https://doi.org/10.1038/srep33251 Boulangé CL, Neves AL, Chilloux J, Nicholson JK, Dumas M-E (2016) Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med 8(1):42. https://doi.org/10.1186/s13073-016-0303-2 Li H, Limenitakis JP, Fuhrer T, Geuking MB, Lawson MA, Wyss M, Brugiroux S, Keller I, Macpherson JA, Rupp S (2015) The outer mucus layer hosts a distinct intestinal microbial niche. Nat Commun 6:8292. https://doi.org/10.1038/ncomms9292 Chen C, You LJ, Huang Q, Fu X, Zhang B, Liu RH, Li C (2018) Modulation of gut microbiota by mulberry fruit polysaccharide treatment of obese diabetic db/db mice. Food Funct 9(7):3732–3742. https://doi.org/10.1039/C7FO01346A Kim W-G, Kim HI, Kwon EK, Han MJ, Kim D-H (2018) Lactobacillus plantarum LC27 and Bifidobacterium longum LC67 mitigate alcoholic steatosis in mice by inhibiting LPS-mediated NF-κB activation through restoration of the disturbed gut microbiota. Food Funct 9(8):4255–4265. https://doi.org/10.1039/C8FO00252E Hamilton MK, Boudry G, Lemay DG, Raybould HE (2015) Changes in intestinal barrier function and gut microbiota in high-fat diet-fed rats are dynamic and region dependent. Am J Physiol Gastrointest Liver Physiol 308(10):840–851. https://doi.org/10.1152/ajpgi.00029.2015 Houghton D, Stewart C, Day C, Trenell M (2016) Gut microbiota and lifestyle interventions in NAFLD. Int J Mol Sci 17(4):447. https://doi.org/10.3390/ijms17040447 Clemente-Postigo M, Oliva-Olivera W, Coin-Aragüez L, Ramos-Molina B, Giraldez-Perez RM, Lhamyani S, Alcaide-Torres J, Perez-Martinez P, El Bekay R, Cardona F (2018) Metabolic endotoxemia promotes adipose dysfunction and inflammation in human obesity. Am J Physiol Endocrinol Metab 316(2):E319–E332. https://doi.org/10.1152/ajpendo.00277.2018 Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci 104(3):979–984. https://doi.org/10.1073/pnas.0605374104 Cui H, Yang S, Zheng M, Liu R, Zhao G, Wen J (2017) High-salt intake negatively regulates fat deposition in mouse. Sci Rep 7(1):2053. https://doi.org/10.1038/s41598-017-01560-3 Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957–2963. https://doi.org/10.1093/bioinformatics/btr507 Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM (2013) Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42(D1):D633–D642. https://doi.org/10.1093/nar/gkt1244 Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461. https://doi.org/10.1093/bioinformatics/btq461 Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336. https://doi.org/10.1038/nmeth.f.303 Do M, Lee E, Oh M-J, Kim Y, Park H-Y (2018) High-glucose or-fructose diet cause changes of the gut microbiota and metabolic disorders in mice without body weight change. Nutrients 10(6):761. https://doi.org/10.3390/nu10060761 Yang T, Zollbrecht C, Winerdal ME, Zhuge Z, Zhang XM, Terrando N, Checa A, Sällström J, Wheelock CE, Winqvist O (2016) Genetic abrogation of adenosine A3 receptor prevents uninephrectomy and high salt–induced hypertension. J Am Heart Assoc 5(7):e003868. https://doi.org/10.1161/JAHA.116.003868 Spadaro PA, Naug HL, Du Toit EF, Donner D, Colson NJ (2015) A refined high carbohydrate diet is associated with changes in the serotonin pathway and visceral obesity. Genet Res. https://doi.org/10.1017/S0016672315000233 Flowers MT, Ntambi JM (2009) Stearoyl-CoA desaturase and its relation to high-carbohydrate diets and obesity. Biochim Biophys Acta 1791(2):85–91. https://doi.org/10.1016/j.bbalip.2008.12.011 Kirpich IA, Marsano LS, McClain CJ (2015) Gut–liver axis, nutrition, and non-alcoholic fatty liver disease. Clin Biochem 48(13–14):923–930. https://doi.org/10.1016/j.clinbiochem.2015.06.023 König J, Wells J, Cani PD, García-Ródenas CL, MacDonald T, Mercenier A, Whyte J, Troost F, Brummer R-J (2016) Human intestinal barrier function in health and disease. Clin Transl Gastroenterol 7(10):e196. https://doi.org/10.1038/ctg.2016.54 Zhang C, Zhang M, Pang X, Zhao Y, Wang L, Zhao L (2012) Structural resilience of the gut microbiota in adult mice under high-fat dietary perturbations. ISME J 6(10):1848. https://doi.org/10.1038/ismej.2012.27 Jang HM, Han SK, Kim JK, Oh SJ, Jang HB, Kim DH (2019) Lactobacillus sakei alleviates high-fat-diet-induced obesity and anxiety in mice by inducing AMPK activation and SIRT1 expression and inhibiting gut microbiota-mediated NF-κB activation. Mol Nutr Food Res 63(6):1800978. https://doi.org/10.1002/mnfr.201800978 Jeong M-Y, Jang H-M, Kim D-H (2019) High-fat diet causes psychiatric disorders in mice by increasing Proteobacteria population. Neurosci Lett 698:51–57. https://doi.org/10.1016/j.neulet.2019.01.006 Wang J, Tang H, Zhang C, Zhao Y, Derrien M, Rocher E, Vlieg JE, Strissel K, Zhao L, Obin M (2015) Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice. ISME J 9(1):1–15. https://doi.org/10.1038/ismej.2014.99 Jiang W, Wu N, Wang X, Chi Y, Zhang Y, Qiu X, Hu Y, Li J, Liu Y (2015) Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. Sci Rep 5:8096. https://doi.org/10.1038/srep08096 Araujo JR, Tomas J, Brenner C, Sansonetti PJ (2017) Impact of high-fat diet on the intestinal microbiota and small intestinal physiology before and after the onset of obesity. Biochimie 141:97–106. https://doi.org/10.1016/j.biochi.2017.05.019 Hersoug LG, Møller P, Loft S (2016) Gut microbiota-derived lipopolysaccharide uptake and trafficking to adipose tissue: implications for inflammation and obesity. Obes Rev 17(4):297–312. https://doi.org/10.1111/obr.12370 He M, Shi B (2017) Gut microbiota as a potential target of metabolic syndrome: the role of probiotics and prebiotics. Cell Biosci 7(1):54. https://doi.org/10.1186/s13578-017-0183-1 Rabot S, Membrez M, Bruneau A, Gérard P, Harach T, Moser M, Raymond F, Mansourian R, Chou CJ (2010) Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism. FASEB J 24(12):4948–4959. https://doi.org/10.1096/fj.10-164921 Yang Y, Zhong Z, Wang B, Xia X, Yao W, Huang L, Wang Y, Ding W (2019) Early-life high-fat diet-induced obesity programs hippocampal development and cognitive functions via regulation of gut commensal Akkermansia muciniphila. Neuropsychopharmacology 44(12):2054–2064. https://doi.org/10.1038/s41386-019-0437-1 Cani PD, Osto M, Geurts L, Everard A (2012) Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes 3(4):279–288. https://doi.org/10.4161/gmic.19625 Gäbele E, Dostert K, Hofmann C, Wiest R, Schölmerich J, Hellerbrand C, Obermeier F (2011) DSS induced colitis increases portal LPS levels and enhances hepatic inflammation and fibrogenesis in experimental NASH. J Hepatol 55(6):1391–1399. https://doi.org/10.1016/j.jhep.2011.02.035 Gavrilova O, Haluzik M, Matsusue K, Cutson JJ, Johnson L, Dietz KR, Nicol CJ, Vinson C, Gonzalez FJ, Reitman ML (2003) Liver peroxisome proliferator-activated receptor γ contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass. J Biol Chem 278(36):34268–34276. https://doi.org/10.1074/jbc.M300043200 Zhang Y, Fan S, Hu N, Gu M, Chu C, Li Y, Lu X, Huang C (2012) Rhein reduces fat weight in db/db mouse and prevents diet-induced obesity in C57Bl/6 mouse through the inhibition of PPARγ signaling. PPAR Res. https://doi.org/10.1155/2012/374936 García-Mediavilla MV, Pisonero-Vaquero S, Lima-Cabello E, Benedicto I, Majano PL, Jorquera F, González-Gallego J, Sánchez-Campos S (2012) Liver X receptor α-mediated regulation of lipogenesis by core and NS5A proteins contributes to HCV-induced liver steatosis and HCV replication. Lab Invest 92(8):1191. https://doi.org/10.1038/labinvest.2012.88 Wein S, Behm N, Petersen RK, Kristiansen K, Wolffram S (2010) Quercetin enhances adiponectin secretion by a PPAR-γ independent mechanism. Eur J Pharm Sci 41(1):16–22. https://doi.org/10.1016/j.ejps.2010.05.004 Achari A, Jain S (2017) Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int J Mol Sci 18(6):1321. https://doi.org/10.3390/ijms18061321 Pettinelli P, Videla LA (2011) Up-regulation of PPAR-γ mRNA expression in the liver of obese patients: an additional reinforcing lipogenic mechanism to SREBP-1c induction. J Clin Endocrinol Metabol 96(5):1424–1430. https://doi.org/10.1210/jc.2010-2129