Consumption of cranberry polyphenols enhances human γδ-T cell proliferation and reduces the number of symptoms associated with colds and influenza: a randomized, placebo-controlled intervention study
Nutrition Journal - 2013
Tóm tắt
Our main objective was to evaluate the ability of cranberry phytochemicals to modify immunity, specifically γδ-T cell proliferation, after daily consumption of a cranberry beverage, and its effect on health outcomes related to cold and influenza symptoms. The study was a randomized, double-blind, placebo-controlled, parallel intervention. Subjects drank a low calorie cranberry beverage (450 ml) made with a juice-derived, powdered cranberry fraction (n = 22) or a placebo beverage (n = 23), daily, for 10 wk. PBMC were cultured for six days with autologous serum and PHA-L stimulation. Cold and influenza symptoms were self-reported. The proliferation index of γδ-T cells in culture was almost five times higher after 10 wk of cranberry beverage consumption (p <0.001). In the cranberry beverage group, the incidence of illness was not reduced, however significantly fewer symptoms of illness were reported (p = 0.031). Consumption of the cranberry beverage modified the ex vivo proliferation of γδ-T cells. As these cells are located in the epithelium and serve as a first line of defense, improving their function may be related to reducing the number of symptoms associated with a cold and flu. ClinicalTrials.gov Identifier:
NCT01398150
.
Từ khóa
Tài liệu tham khảo
Jepson R: Cranberries for the prevention of urinary tract infections. Nephrology (Carlton). 2013, 18: 388-389.
Jepson RG, Williams G, Craig JC: Cranberries for preventing urinary tract infections. Cochrane Database Syst Rev. 2012, 10: CD001321-
Yang X, Teng F, Zeng H, Liu Y: Impact of cranberry juice on initial adhesion of the EPS producing bacterium Burkholderia cepacia. Biofouling. 2012, 28: 417-431. 10.1080/08927014.2012.682576.
Feldman M, Grenier D: Cranberry proanthocyanidins act in synergy with licochalcone A to reduce Porphyromonas gingivalis growth and virulence properties, and to suppress cytokine secretion by macrophages. J Appl Microbiol. 2012, 113: 438-447. 10.1111/j.1365-2672.2012.05329.x.
Howell AB, Botto H, Combescure C, Blanc-Potard AB, Gausa L, Matsumoto T, et al: Dosage effect on uropathogenic Escherichia coli anti-adhesion activity in urine following consumption of cranberry powder standardized for proanthocyanidin content: a multicentric randomized double blind study. BMC Infect Dis. 2010, 10: 94-10.1186/1471-2334-10-94.
Jass J, Reid G: Effect of cranberry drink on bacterial adhesion in vitro and vaginal microbiota in healthy females. Can J Urol. 2009, 16: 4901-4907.
Han CH, Kim SH, Kang SH, Shin OR, Lee HK, Kim HJ, et al: Protective effects of cranberries on infection-induced oxidative renal damage in a rabbit model of vesico-ureteric reflux. BJU Int. 2007, 100: 1172-1175.
Wing DA, Rumney PJ, Leu SY, Zaldivar F: Comparison of urinary cytokines after ingestion of cranberry juice cocktail in pregnant subjects: a pilot study. Am J Perinatol. 2009, 27: 137-142.
Hochman N, Houri-Haddad Y, Koblinski J, Wahl L, Roniger M, Bar-Sinai A, et al: Cranberry juice constituents impair lymphoma growth and augment the generation of antilymphoma antibodies in syngeneic mice. Nutr Cancer. 2008, 60: 511-517. 10.1080/01635580801956493.
Takahashi S, Hamasuna R, Yasuda M, Arakawa S, Tanaka K, Ishikawa K, et al: A randomized clinical trial to evaluate the preventive effect of cranberry juice (UR65) for patients with recurrent urinary tract infection. J Infect Chemother. 2013, 19: 112-117. 10.1007/s10156-012-0467-7.
Salo J, Uhari M, Helminen M, Korppi M, Nieminen T, Pokka T, et al: Cranberry juice for the prevention of recurrences of urinary tract infections in children: a randomized placebo-controlled trial. Clin Infect Dis. 2012, 54: 340-346. 10.1093/cid/cir801.
Kontiokari T, Salo J, Eerola E, Uhari M: Cranberry juice and bacterial colonization in children–a placebo-controlled randomized trial. Clin Nutr. 2005, 24: 1065-1072. 10.1016/j.clnu.2005.08.009.
Bianco L, Perrelli E, Towle V, Van Ness PH, Juthani-Mehta M: Pilot randomized controlled dosing study of cranberry capsules for reduction of bacteriuria plus pyuria in female nursing home residents. J Am Geriatr Soc. 2012, 60: 1180-1181. 10.1111/j.1532-5415.2012.03976.x.
Stapleton AE, Dziura J, Hooton TM, Cox ME, Yarova-Yarovaya Y, Chen S, et al: Recurrent urinary tract infection and urinary Escherichia coli in women ingesting cranberry juice daily: a randomized controlled trial. Mayo Clin Proc. 2012, 87: 143-150. 10.1016/j.mayocp.2011.10.006.
Nantz MP, Rowe CA, Nieves C, Percival SS: Immunity and antioxidant capacity in humans is enhanced by consumption of a dried, encapsulated fruit and vegetable juice concentrate. J Nutr. 2006, 136: 2606-2610.
Rowe CA, Nantz MP, Bukowski JF, Percival SS: Specific formulation of Camellia sinensis prevents cold and flu symptoms and enhances γδ T cell function: a randomized, double-blind, placebo-controlled study. J Am Coll Nutr. 2007, 26: 445-452. 10.1080/07315724.2007.10719634.
Rowe CA, Nantz MP, Nieves C, West RL, Percival SS: Regular consumption of concord grape juice benefits human immunity. J Med Food. 2011, 14: 69-78. 10.1089/jmf.2010.0055.
Graff JC, Jutila MA: Differential regulation of CD11b on gammadelta T cells and monocytes in response to unripe apple polyphenols. J Leukoc Biol. 2007, 82: 603-607. 10.1189/jlb.0207125.
Graff JC, Kimmel EM, Freedman B, Schepetkin IA, Holderness J, Quinn MT, et al: Polysaccharides derived from Yamoa (Funtumia elastica) prime gammadelta T cells in vitro and enhance innate immune responses in vivo. Int Immunopharmacol. 2009, 9: 1313-1322. 10.1016/j.intimp.2009.07.015.
Holderness J, Jackiw L, Kimmel E, Kerns H, Radke M, Hedges JF, et al: Select plant tannins induce IL-2Ralpha up-regulation and augment cell division in gammadelta T cells. J Immunol. 2007, 179: 6468-6478.
Cao G, Prior RL: Comparison of different analytical methods for assessing total antioxidant capacity of human serum. Clin Chem. 1998, 44: 1309-1315.
Ou B, Hampsch-Woodill M, Prior RL: Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J Agric Food Chem. 2001, 49: 4619-4626. 10.1021/jf010586o.
Hollman PC, Katan MB: Absorption, metabolism and health effects of dietary flavonoids in man. Biomed Pharmacother. 1997, 51: 305-310. 10.1016/S0753-3322(97)88045-6.
Manach C, Texier O, Morand C, Crespy V, Regerat F, Demigne C, et al: Comparison of the bioavailability of quercetin and catechin in rats. Free Radic Biol Med. 1999, 27: 1259-1266. 10.1016/S0891-5849(99)00159-8.
Frank T, Netzel M, Strass G, Bitsch R, Bitsch I: Bioavailability of anthocyanidin-3-glucosides following consumption of red wine and red grape juice. Can J Physiol Pharmacol. 2003, 81: 423-435. 10.1139/y03-038.
Yasuda M, Ogawa D, Nasu T, Yamaguchi T, Murakami T: Kinetics and distribution of bovine gammadelta T-lymphocyte in the intestine: gammadelta T cells accumulate in the dome region of Peyer’s patch during prenatal development. Dev Comp Immunol. 2005, 29: 555-564. 10.1016/j.dci.2004.10.004.
Salmi M, Adams D, Jalkanen S: Cell adhesion and migration: IV: lymphocyte trafficking in the intestine and liver. Am J Physiol. 1998, 274: G1-G6.
Watanabe C, Hokari R, Komoto S, Kurihara C, Okada Y, Matsunaga H, et al: Lemon grass (Cymbopogon citratus) ameliorates murine spontaneous ileitis by decreasing lymphocyte recruitment to the inflamed intestine. Microcirculation. 2010, 17: 321-332.
Ishizuka S, Tanaka S: Modulation of CD8+ intraepithelial lymphocyte distribution by dietary fiber in the rat large intestine. Exp Biol Med (Maywood). 2002, 227: 1017-1021.
McNicol L, Andersen LW, Liu G, Doolan L, Baek L: Markers of splanchnic perfusion and intestinal translocation of endotoxins during cardiopulmonary bypass: effects of dopamine and milrinone. J Cardiothorac Vasc Anesth. 1999, 13: 292-298. 10.1016/S1053-0770(99)90266-5.
Acheson DW, Moore R, De BS, Lincicome L, Jacewicz M, Skutelsky E, et al: Translocation of Shiga toxin across polarized intestinal cells in tissue culture. Infect Immun. 1996, 64: 3294-3300.
Gardner ML: Gastrointestinal absorption of intact proteins. Annu Rev Nutr. 1988, 8: 329-350. 10.1146/annurev.nu.08.070188.001553. 329–350
Castell JV, Friedrich G, Kuhn CS, Poppe GE: Intestinal absorption of undegraded proteins in men: presence of bromelain in plasma after oral intake. Am J Physiol. 1997, 273: G139-G146.
Spencer JP, Schroeter H, Shenoy B, Srai SK, Debnam ES, Rice-Evans C: Epicatechin is the primary bioavailable form of the procyanidin dimers B2 and B5 after transfer across the small intestine. Biochem Biophys Res Commun. 2001, 285: 588-593. 10.1006/bbrc.2001.5211.
Ou K, Percival SS, Zou T, Khoo C, Gu L: Transport of cranberry A-type procyanidin dimers, trimers, and tetramers across monolayers of human intestinal epithelial Caco-2 cells. J Agric Food Chem. 2012, 60: 1390-1396. 10.1021/jf2040912.
Jutila MA, Holderness J, Graff JC, Hedges JF: Antigen-independent priming: a transitional response of bovine gammadelta T-cells to infection. Anim Health Res Rev. 2008, 9: 47-57. 10.1017/S1466252307001363.
Macintyre S, Pritchard C: Comparisons between the self-assessed and observer-assessed presence and severity of colds. Soc Sci Med. 1989, 29: 1243-1248. 10.1016/0277-9536(89)90063-4.
Bodet C, Chandad F, Grenier D: Cranberry components inhibit interleukin-6, interleukin-8, and prostaglandin E production by lipopolysaccharide-activated gingival fibroblasts. Eur J Oral Sci. 2007, 115: 64-70. 10.1111/j.1600-0722.2007.00415.x.
Madrigal-Carballo S, Rodriguez G, Sibaja M, Reed JD, Vila AO, Molina F: Chitosomes loaded with cranberry proanthocyanidins attenuate the bacterial lipopolysaccharide-induced expression of iNOS and COX-2 in raw 264.7 macrophages. J Liposome Res. 2009, 19: 189-196. 10.1080/08982100902729436.