Consumer preferences for beer attributes in Germany: A conjoint and latent class approach

Journal of Retailing and Consumer Services - Tập 47 - Trang 229-240 - 2019
Stephan G.H. Meyerding1, Alexander Bauchrowitz2, Mira Lehberger3
1Department of Agricultural Economics and Rural Development, Georg-August-Universität Göttingen, Platz der Göttinger Sieben 5, 37073 Göttingen,Germany
2Faculty of Economic Sciences, Georg-August-Universität Göttingen, Germany
3Department of Fresh Produce Logistics, Hochschule Geisenheim University, Germany

Tài liệu tham khảo

Aquilani, 2015, Beer choice and consumption determinants when craft beers are tasted: an exploratory study of consumer references, Food Qual. Prefer., 41, 214, 10.1016/j.foodqual.2014.12.005 Backhaus, 2011 Baumgartner, 2009, Hierarchisch bayesianische Methoden bei der Conjointanalyse [Hierarchical Bayesian methods in conjoint analysis], 147 Bavorová, 2016, Who buys from farmers' markets and farm shops: a case of Germany, Int. J. Consum. Stud., 40, 107, 10.1111/ijcs.12220 Bloomfield, 2001, Investigating gender convergence in alcohol consumption in Finland, Germany, the Netherlands, and Switzerland: a repeated survey analysis, Subst. Abus., 22, 39, 10.1080/08897070109511444 Böhm, 2015, User preferences and segments in app store marketing: a conjoint-based approach, Int. J. Adv. Netw. Serv., 8, 106 BÖLW (Bund und Ökologische Lebensmittelwirtschaft e. V.), 2018. Zahlen Daten Fakten -Die Bio-Branche 2018. Retrieved from 〈https://www.boelw.de/fileadmin/user_upload/Dokumente/Zahlen_und_Fakten/Brosch%C3%BCre_2018/ZDF_2018_Inhalt_Web_Einzelseiten_kleiner.pdf〉. Brunsø, 1995, Development and testing of a cross-culturally valid instrument: food-related lifestyle, Adv. Consum. Res., 22, 475 Brunsø, 1996 Bruwer, 2017, Domain-specific market segmentation using a latent class mixture modelling approach and wine-related lifestyle (WRL) algorithm, Eur. J. Mark., 51, 1552, 10.1108/EJM-10-2016-0593 Bruwer, 2007, Wine-related lifestyle (WRL) market segmentation: demographic and behavioral factors, J. Wine Res., 18, 19, 10.1080/09571260701526865 Brzoska, 2003 Bund Ökologische Lebensmittelwirtschaft, 2017. Zahlen. Daten. Fakten. Die Bio-Branche 2017 [Numbers. Dates. Facts. The organic industry 2017]. Caporale, 2004, Influence of information about manufacturing process on beer acceptability, Food Qual. Prefer., 15, 271, 10.1016/S0950-3293(03)00067-3 Choi, 2005, The all-American beer: a case of inferior standard (taste) prevailing?, Bus. Horiz., 48, 79, 10.1016/j.bushor.2004.10.016 Colen, 2016, Economic growth, globalisation and beer consumption, J. Agric. Econ., 67, 186, 10.1111/1477-9552.12128 Costanzo, 1982, An alternative method for assessing goodness-of-fit for logit models, Environ. Plan. A, 14, 963, 10.1068/a140963 Cullen, 2009, Analysis of rural and urban consumer behavior toward new food products using a food-related lifestyle instrument, J. Foodserv. Bus. Res., 12, 18, 10.1080/15378020802671842 Deutscher Brauer-Bund, 2014. Kennzeichnung von Bier und Biermischgetränken [Labeling of Beer and Mixed Beer Drinks]. Retrieved from 〈http://www.brauer-bund.de/download/Archiv/PDF/140207_Praxisleitfaden_Kennzeichnung_2014.pdf〉. Deutscher Brauer-Bund, 2017. Deutsche Brauwirtschaft in Zahlen [German Brewing Industry in Numbers]. Retrieved from 〈http://www.brauer-bund.de/download/Archiv/PDF/statistiken/STATISTIK%20Brauwirtschaft%202008%20-%202016.pdf〉. Dierig, 2017, Kleiner Marktanteil mit großer Wirkung [small market share with great impact], Welt Bier Report., 2017, 27 Donadini, 2017, Uncovering patterns of consumers' interest for beer: a case study with craft beers, Food Res. Int., 91, 183, 10.1016/j.foodres.2016.11.043 Espejel, 2007, The role of intrinsic and extrinsic quality attributes on consumer behaviour for traditional food products, Manag. Serv. Qual.: Int. J., 17, 681, 10.1108/09604520710835000 Gieseking, 2009 Greene, 2003, A latent class model for discrete choice analysis: contrasts with mixed logit, Transp. Res. Part B Methodol., 37, 681, 10.1016/S0191-2615(02)00046-2 Grimm, 2013 Grunert, 2011, Is food-related lifestyle (FRL) able to reveal food consumption patterns in non-Western cultural environments? Its adaptation and application in urban China, Appetite, 56, 357, 10.1016/j.appet.2010.12.020 Gunarathne, 2017 Hair, 2010 Krien, 2017, Zweistelliges Wachstum [double digit growth], Lebensm. Ztg., 2017, 34 Lopez, 2012, Home bias in US beer consumption, Pac. Econ. Rev., 17, 525, 10.1111/j.1468-0106.2012.00598.x Maack, 2011 McCluskey, J., Shreay, S., 2012. Culture and Beer Preferences. In: The Economics of Beer, Swinnen, J.F.M. (eds.). Oxford Scholarship Online. 〈https://doi.org/10.1093/acprof:oso/9780199693801.001.0001〉. Meyerding, 2016, Consumer preferences for food labels on tomatoes in Germany - A comparison of a quasi-experiment and two stated preference approaches, Appetite, 103, 105, 10.1016/j.appet.2016.03.025 Meyerding, 2018, What is local food? The case of consumer preferences for local food labeling of tomatoes in Germany, J. Clean. Prod., 207, 30 Meyerding, 2018, Beef quality labels: a combination of sensory acceptance test, stated willingness to pay, and choice-based conjoint analysis, Appetite, 127, 324, 10.1016/j.appet.2018.05.008 Meyerding, 2018, Consumer preferences for organic labels in Germany using the example of apples – combining choice-based conjoint analysis and eye-tracking measurements, J. Clean. Prod., 181, 772, 10.1016/j.jclepro.2018.01.235 Muncy, 1996, Measuring perceived brand parity, Adv. Consum. Res., 23, 411 Nadine, 2018, Consumer lay theories on healthy nutrition: a Q methodology application in Germany, Appetite, 120, 145 Olitsky, 2017, Analysis of stated preferences for accessible services and commerce in a walkable distance from home, Transp. Res. Procedia, 27, 1001, 10.1016/j.trpro.2017.12.064 Orme, 2010 Reid, 2014, From yellow fizz to big biz: american craft beer comes of age, Focus Geogr., 57, 114, 10.1111/foge.12034 Sattler, 2006, Methoden zur Messung von Präferenzen für Innovationen [Methods for measuring preferences for innovation], Schmalenbachs Z. für Betr. Forsch., 58, 154, 10.1007/BF03372947 Sawtooth Software, 2004. The CBC Latent Class Technical Paper. Retrieved from 〈https://www.sawtoothsoftware.com/download/techpap/lctech.pdf〉. Sester, 2012, Investigating consumers' representations of beers through a free association task: a comparison between packaging and blind conditions, Food Qual. Prefer., 28, 475, 10.1016/j.foodqual.2012.11.005 Shen, 2009, Latent class model or mixed logit model? A comparison by transport mode choice data, Appl. Econ., 41, 2915, 10.1080/00036840801964633 Schricker, 2016, craft-Stoff für den Biermarkt? [Craft-Stoff for the beer market?], ifo Schnelld., 69, 49 Sester, 2013, Investigating consumers' representations of beers through a free association task: a comparison between packaging and blind conditions, Food Qual. Prefer., 28, 475, 10.1016/j.foodqual.2012.11.005 Strobl, 2016, Spezialbiere sorgen für Bewegung [Special beers provide movement], Lebensm. Ztg., 2016, 44 Van Kleef, 2008, Consumer preferences for front-of-pack calories labelling, Public Health Nutr., 11, 203, 10.1017/S1368980007000304 Wang, 2017, Chinese consumers and European beer: associations between attribute importance, socio-demographics, and consumption, Appetite, 108, 416, 10.1016/j.appet.2016.10.029 Wycherley, 2008, Speciality food orientation of food related lifestyle (FRL) segments in Great Britain, Food Qual. Prefer., 19, 498, 10.1016/j.foodqual.2008.02.006