Constructive Geometrization of Thurston Maps and Decidability of Thurston Equivalence

Arnold Mathematical Journal - Tập 1 Số 4 - Trang 361-402 - 2015
Nikita Selinger1, Michael Yampolsky2
1Department of Mathematics, University of Alabama at Birmingham, Birmingham, USA
2Mathematics Department, University of Toronto, Toronto, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bartholdi, L., Buff, X., Graf, H.-C., von Bothmer, Kröker, J.: Algorithmic construction of Hurwitz maps, e-print (2013). arXiv:1303.1579

Bing, R.H.: An alternative proof that 3-manifolds can be triangulated. Ann. Math. 69(2), 37–65 (1959)

Bonk, M., Meyer, D.: Expanding Thurston maps, e-print (2010). arXiv:1009.3647

Bonnot, S., Braverman, M., Yampolsky, M.: Thurston equivalence is decidable. Moscow Math. J. 12, 747–763 (2012)

Boone, W.: The word problem. Proc. Natl. Acad. Sci. 44, 1061–1065 (1958)

Buff, X., Guizhen, C., Lei, T.: Teichmüller spaces and holomorphic dynamics, 2014, Handbook of Teichmüller theory, vol IV, IRMA Lect. Math. Theor. Phys., 19, Eur. Math. Soc., Zürich, pp 717–756

Dehn, M.: Über unendliche diskontinuierliche Gruppen. Math. Ann. 71, 116–144 (1911)

Dehn, M.: Transformation der Kurven, auf zweiseitigen Flächen. Math. Ann. 72, 413–421 (1992)

Douady, A., Douady, R.: Algèbre et théories galoisiennes, Cassini (2005)

Douady, A., Hubbard, J.H.: A proof of Thurston’s topological characterization of rational functions. Acta Math. 171, 263–297 (1993)

Farb, B., Margalit, D.: A Primer on Mapping Class Groups. Princeton University Press (2011)

Grunewald, J., Segal, D.: The solubility of certain decision problems in arithmetic and algebra. Bull. AMS (new series) 1, 6 (1979)

Hamenstädt, U.: Geometry of the mapping class group, ii: A biautomatic structure, 2009, e-print, arXiv:0912.0137v1

Hemion, G.: On the classification of homeomorphisms of 2-manifolds and the classification of 3-manifolds. Acta Math. 142, 123–155 (1979)

Hurwitz, A.: Ueber Riemann’sche Fächen mit gegebenen Verzweigungspunkten. Math. Ann. 39, 1–60 (1891)

Imayoshi, Y., Taniguchi, M.: An introduction to Teichmüller spaces. Springer, Tokyo (1992)

Levy, S.: Critically finite rational maps, Ph.D. Thesis (1985)

Lickorish, W.B.R.: A finite set of generators for the homeotopy group of a 2-manifold. Proc. Camb. Philos. Soc. 60, 769–778 (1964)

Milnor, J.: Lattès On, maps,: Dynamics on the Riemann sphere, pp. 9–43. Eur. Math. Soc, Zurich (2006)

Novikov, P.S.: On the algorithmic unsolvability of the word problem in group theory (in Russian). In: Proceedings of the Steklov Institute of Mathematics, 44 (1955)

Pilgrim, K.: Thurston, Canonical, obstructions. Adv. Math. 158, 154–168 (2001)

Pilgrim, K.: Combinations of complex dynamical systems. Lecture Notes in Mathematics, Springer 2003 (1827)

Radó, T., Uber den Begriff der Riemannschen Flächen. Acta Litt. Sci. Szeged 101–121 (1925)

Selinger, N.: On Thurston’s characterization theorem for branched covers, Ph.D. Thesis (2011)

Selinger, N.: Thurston’s pullback map on the augmented Teichmüller space and applications. Invent. Math. 189, 111–142 (2012)

Selinger, N.: Topological characterization of canonical Thurston obstructions. J. Mod. Dyn. 7, 99–117 (2013)

Shishikura, M.: On a theorem of M. Rees for the matings of polynomials. In: The Mandelbrot set, theme and variations. London Math. Soc. Lect. Note Ser. 274, Lei, Tan, pp. 289–305. Cambridge Univ. Press (2000)

Tao, J.: Linearly bounded conjugator property for mapping class groups. GAFA 23, 415–466 (2013)

Thurston, W.P.: Three-dimensional geometry and topology. Princeton University Press (1997)