Constructive Geometrization of Thurston Maps and Decidability of Thurston Equivalence
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bartholdi, L., Buff, X., Graf, H.-C., von Bothmer, Kröker, J.: Algorithmic construction of Hurwitz maps, e-print (2013). arXiv:1303.1579
Bing, R.H.: An alternative proof that 3-manifolds can be triangulated. Ann. Math. 69(2), 37–65 (1959)
Bonk, M., Meyer, D.: Expanding Thurston maps, e-print (2010). arXiv:1009.3647
Bonnot, S., Braverman, M., Yampolsky, M.: Thurston equivalence is decidable. Moscow Math. J. 12, 747–763 (2012)
Buff, X., Guizhen, C., Lei, T.: Teichmüller spaces and holomorphic dynamics, 2014, Handbook of Teichmüller theory, vol IV, IRMA Lect. Math. Theor. Phys., 19, Eur. Math. Soc., Zürich, pp 717–756
Douady, A., Douady, R.: Algèbre et théories galoisiennes, Cassini (2005)
Douady, A., Hubbard, J.H.: A proof of Thurston’s topological characterization of rational functions. Acta Math. 171, 263–297 (1993)
Grunewald, J., Segal, D.: The solubility of certain decision problems in arithmetic and algebra. Bull. AMS (new series) 1, 6 (1979)
Hamenstädt, U.: Geometry of the mapping class group, ii: A biautomatic structure, 2009, e-print, arXiv:0912.0137v1
Hemion, G.: On the classification of homeomorphisms of 2-manifolds and the classification of 3-manifolds. Acta Math. 142, 123–155 (1979)
Hurwitz, A.: Ueber Riemann’sche Fächen mit gegebenen Verzweigungspunkten. Math. Ann. 39, 1–60 (1891)
Levy, S.: Critically finite rational maps, Ph.D. Thesis (1985)
Lickorish, W.B.R.: A finite set of generators for the homeotopy group of a 2-manifold. Proc. Camb. Philos. Soc. 60, 769–778 (1964)
Milnor, J.: Lattès On, maps,: Dynamics on the Riemann sphere, pp. 9–43. Eur. Math. Soc, Zurich (2006)
Novikov, P.S.: On the algorithmic unsolvability of the word problem in group theory (in Russian). In: Proceedings of the Steklov Institute of Mathematics, 44 (1955)
Pilgrim, K.: Combinations of complex dynamical systems. Lecture Notes in Mathematics, Springer 2003 (1827)
Radó, T., Uber den Begriff der Riemannschen Flächen. Acta Litt. Sci. Szeged 101–121 (1925)
Selinger, N.: On Thurston’s characterization theorem for branched covers, Ph.D. Thesis (2011)
Selinger, N.: Thurston’s pullback map on the augmented Teichmüller space and applications. Invent. Math. 189, 111–142 (2012)
Selinger, N.: Topological characterization of canonical Thurston obstructions. J. Mod. Dyn. 7, 99–117 (2013)
Shishikura, M.: On a theorem of M. Rees for the matings of polynomials. In: The Mandelbrot set, theme and variations. London Math. Soc. Lect. Note Ser. 274, Lei, Tan, pp. 289–305. Cambridge Univ. Press (2000)