Construction of basic functions for numerical utilisation of Ritz's method

Springer Science and Business Media LLC - Tập 12 - Trang 435-447 - 1968
J. -J. Goël1
1Institut de mathématiques appliquées de l'Ecole polytechnique de l'Université de Lausanne, Lausanne

Tài liệu tham khảo

Mikhlin, S. G.: Variational methods in mathematical physics. New York: Macmillan 1964. Engeli, M., Th. Ginsburg, H. Rutishauser, andE. Stiefel: Refined iterative methods for computation of the solution and the eigenvalues of self-adjoint boundary value problems. Mitteilungen aus dem Institut für angewandte Mathematik, Nr. 8, Zürich, 1959 Courant, R.: Variational methods for the solution of problems of equilibrium and vibrations. Bull. Amer. Math. Soc.49, 1–23 (1943). Clough, R. W., andJ. L. Tocher: Finite element stiffness matrices for analysis of plates in bending. Proc. Conf. Matrix Methods in Struct. Mech., Air Force Inst. of Tech., Wright Patterson A.F. Base, Ohio, 1965. Zienkiewicz, O. C.: The finite element method in structural and continuum mechanics. New York: McGraw Hill 1967. Ciarlet, P. G., M. H. Schultz, andR. S. Varga: Numerical methods of highorder accuracy for nonlinear boundary value problems. I. One dimensional problem. Numerische Mathematik9, 394–430 (1967). Schultz, M. H., andR. S. Varga:L-splines. Numerische Mathematik10, 345–369 (1967). Birkhoff, G., M. H. Schultz, andR. S. Varga: Piecewise Hermite interpolation in one and two variables with applications to partial differential equations. Numerische Mathematik11, 232–256 (1968). Goël, J.-J.: Utilisation numérique de la méthode de Ritz, application au calcul de plaque, thèse de doctorat. Ecole polytechnique de l'Université de Lausanne, 1968. - List of basic functions for numerical utilisation of Ritz's method, application to the problem of the plate. Ecole polytechnique de l'Université de Lausanne, 1968.