Phân tích dựa trên ràng buộc về khả năng trao đổi chất của Salmonella typhimurium trong quá trình tương tác giữa chủ và tác nhân gây bệnh

Anu Raghunathan1, Jennifer L. Reed2, Sook-il Shin1, Bernhard Ø. Palsson3, Simon Daefler1
1Department of Infectious Disease, Mount Sinai School of Medicine, New York, USA
2Department of Chemical and Biological Engineering, University of Wisconsin-Madison, USA
3Department of Bioengineering, University of California San Diego, San Diego, USA

Tóm tắt

Tóm tắt Đặt vấn đề Các nhiễm trùng do Salmonella gây ra gây ra tỷ lệ bệnh tật và tử vong đáng kể trên toàn cầu. Sự tái sinh của Salmonella typhimurium bên trong tế bào chủ là một hệ thống mô hình để nghiên cứu cơ chế bệnh sinh của các nhiễm khuẩn nội bào. Mô hình hóa quy mô bộ gen của mạng lưới chuyển hóa vi khuẩn cung cấp một công cụ mạnh mẽ để xác định và phân tích các con đường cần thiết cho sự tái sinh thành công trong quá trình tương tác giữa chủ và tác nhân gây bệnh. Kết quả Chúng tôi đã phát triển và xác thực một mạng lưới chuyển hóa quy mô bộ gen của Salmonella typhimurium LT2 (iRR1083). Mô hình này tính đến 1.083 gen mã hóa các protein xúc tác 1.087 phản ứng chuyển hóa và vận chuyển độc đáo trong vi khuẩn. Chúng tôi đã sử dụng phân tích cân bằng dòng và phân tích vai trò của gen in silico để điều tra sự phát triển dưới nhiều điều kiện khác nhau mô phỏng các môi trường in vitro và tế bào chủ. Khai thác biểu mẫu gene của S. typhimurium được phân lập từ dòng tế bào đại thực bào đã được sử dụng để ràng buộc mô hình nhằm dự đoán các con đường chuyển hóa có khả năng hoạt động trong quá trình nhiễm trùng. Kết luận Phân tích của chúng tôi cho thấy có một tập hợp tối thiểu các con đường chuyển hóa mạnh mẽ cần thiết cho sự tái sinh thành công của Salmonella bên trong tế bào chủ. Mô hình này cũng phục vụ như một nền tảng cho sự tích hợp dữ liệu quy mô lớn. Khả năng tính toán của nó cho phép xác định các con đường chuyển hóa có mạng lưới và tạo ra giả thuyết về chuyển hóa trong quá trình nhiễm trùng, điều này có thể được sử dụng cho việc thiết kế hợp lý các kháng sinh mới hoặc các chủng vắc xin.

Từ khóa


Tài liệu tham khảo

Haraga A, Ohlson MB, Miller SI: Salmonellae interplay with host cells. Nat Rev Microbiol. 2008, 6: 53-66. 10.1038/nrmicro1788

Eriksson S, Lucchini S, Thompson A, Rhen M, Hinton JC: Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol Microbiol. 2003, 47: 103-118. 10.1046/j.1365-2958.2003.03313.x

Ansong C, Yoon H, Norbeck AD, Gustin JK, McDermott JE, Mottaz HM, Rue J, Adkins JN, Heffron F, Smith RD: Proteomics analysis of the causative agent of typhoid fever. J Proteome Res. 2008, 7: 546-557. 10.1021/pr070434u

Coldham NG, Randall LP, Piddock LJ, Woodward MJ: Effect of fluoroquinolone exposure on the proteome of Salmonella enterica serovar Typhimurium. J Antimicrob Chemother. 2006, 58: 1145-1153. 10.1093/jac/dkl413

Shi L, Adkins JN, Coleman JR, Schepmoes AA, Dohnkova A, Mottaz HM, Norbeck AD, Purvine SO, Manes NP, Smallwood HS, Wang H, Forbes J, Gros P, Uzzau S, Rodland KD, Heffron F, Smith RD, Squier TC: Proteomic analysis of Salmonella enterica serovar typhimurium isolated from RAW 264.7 macrophages: identification of a novel protein that contributes to the replication of serovar typhimurium inside macrophages. J Biol Chem. 2006, 281: 29131-29140. 10.1074/jbc.M604640200

Webber MA, Coldham NG, Woodward MJ, Piddock LJ: Proteomic analysis of triclosan resistance in Salmonella enterica serovar Typhimurium. J Antimicrob Chemother. 2008, 62: 92-97. 10.1093/jac/dkn138

Munoz-Elias EJ, McKinney JD: Carbon metabolism of intracellular bacteria. Cell Microbiol. 2006, 8: 10-22. 10.1111/j.1462-5822.2005.00648.x

Jamshidi N, Palsson BO: Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets. BMC Syst Biol. 2007, 1: 26- 10.1186/1752-0509-1-26

Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BO: A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol. 2007, 3: 121- 10.1038/msb4100155

Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson BO: Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci USA. 2007, 104: 1777-1782. 10.1073/pnas.0610772104

Oh YK, Palsson BO, Park SM, Schilling CH, Mahadevan R: Genome-scale reconstruction of metabolic network in bacillus subtilis based on high-throughput phenotyping and gene essentiality data. J Biol Chem. 2007, 28: 28791-28799. 10.1074/jbc.M703759200.

Feist AM, Herrgard MJ, Thiele I, Reed JL, Palsson BO: Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol. 2009, 7: 129-143. 10.1038/nrmicro1949

Price ND, Reed JL, Palsson BO: Genome-scale models of microbial cells: evaluating the consequences of constraint. Nat Rev Microbiol. 2004, 2: 886-897. 10.1038/nrmicro1023

Schilling CH, Covert MW, Famili I, Church GM, Edwards JS, Palsson BO: Genome-scale metabolic model of Helicobacter pylori 26695. J Bacteriol. 2002, 184: 4582-4593. 10.1128/JB.184.16.4582-4593.2002

Raghunathan A, Price ND, Galperin MY, Makarova KS, Purvine S, Picone AF, Cherny T, Xie T, Reilly TJ, Munson RJ, Tyler RE, Akerley BJ, Smith AL, Palsson BO, Kolker E: In Silico Metabolic Model and Protein Expression of Haemophilus influenzae Strain Rd KW20 in Rich Medium. OMICS. 2004, 8: 25-41. 10.1089/153623104773547471

Forster J, Famili I, Fu P, Palsson BO, Nielsen J: Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 2003, 13: 244-253. 10.1101/gr.234503

Mahadevan R, Bond DR, Butler JE, Esteve-Nunez A, Coppi MV, Palsson BO, Schilling CH, Lovley DR: Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling. Appl Environ Microbiol. 2006, 72: 1558-1568. 10.1128/AEM.72.2.1558-1568.2006

Trawick JD, Schilling CH: Use of constraint-based modeling for the prediction and validation of antimicrobial targets. Biochem Pharmacol. 2006, 71: 1026-1035. 10.1016/j.bcp.2005.10.049

Thiele I, Vo TD, Price ND, Palsson BO: Expanded metabolic reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an in silico genome-scale characterization of single- and double-deletion mutants. J Bacteriol. 2005, 187: 5818-5830. 10.1128/JB.187.16.5818-5830.2005

Heinemann M, Kummel A, Ruinatscha R, Panke S: In silico genome-scale reconstruction and validation of the Staphylococcus aureus metabolic network. Biotechnol Bioeng. 2005, 92: 850-864. 10.1002/bit.20663

Oberhardt MA, Puchalka J, Fryer KE, Dos Santos VA, Papin JA: Genome-scale metabolic network analysis of the opportunistic pathogen Pseudomonas aeruginosa PAO1. J Bacteriol. 2008, 190: 2790-2803. 10.1128/JB.01583-07

Becker SA, Palsson BO: Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation. BMC Microbiol. 2005, 5: 8- 10.1186/1471-2180-5-8

Baart GJ, Zomer B, de Haan A, Pol van der LA, Beuvery EC, Tramper J, Martens DE: Modeling Neisseria meningitidis metabolism: from genome to metabolic fluxes. Genome Biol. 2007, 8: R136- 10.1186/gb-2007-8-7-r136

Chavali AK, Whittemore JD, Eddy JA, Williams KT, Papin JA: Systems analysis of metabolism in the pathogenic trypanosomatid Leishmania major. Mol Syst Biol. 2008, 4: 177- 10.1038/msb.2008.15

McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, Porwollik S, Ali J, Dante M, Du F, Hou S, Layman D, Leonard S, Nguyen C, Scott K, Holmes A, Grewal N, Mulvaney E, Ryan E, Sun H, Florea L, Miller W, Stoneking T, Nhan M, Waterston R, Wilson RK: Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature. 2001, 413: 852-856. 10.1038/35101614

Reed JL, Vo TD, Schilling CH, Palsson BO: An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol. 2003, 4: R54- 10.1186/gb-2003-4-9-r54

Quinn T, O'Mahony R, Baird AW, Drudy D, Whyte P, Fanning S: Multi-drug resistance in Salmonella enterica: efflux mechanisms and their relationships with the development of chromosomal resistance gene clusters. Curr Drug Targets. 2006, 7: 849-860. 10.2174/138945006777709548

Nikaido H, Basina M, Nguyen V, Rosenberg EY: Multidrug efflux pump AcrAB of Salmonella typhimurium excretes only those beta-lactam antibiotics containing lipophilic side chains. J Bacteriol. 1998, 180: 4686-4692.

Piddock LJ: Multidrug-resistance efflux pumps – not just for resistance. Nat Rev Microbiol. 2006, 4: 629-636. 10.1038/nrmicro1464

Shiloh MU, Nathan CF: Reactive nitrogen intermediates and the pathogenesis of Salmonella and mycobacteria. Curr Opin Microbiol. 2000, 3: 35-42. 10.1016/S1369-5274(99)00048-X

Janssen R, Straaten van der T, van Diepen A, van Dissel JT: Responses to reactive oxygen intermediates and virulence of Salmonella typhimurium. Microbes Infect. 2003, 5: 527-534. 10.1016/S1286-4579(03)00069-8

Mills PC, Richardson DJ, Hinton JC, Spiro S: Detoxification of nitric oxide by the flavorubredoxin of Salmonella enterica serovar Typhimurium. Biochem Soc Trans. 2005, 33: 198-199. 10.1042/BST0330198

De Groote MA, Granger D, Xu Y, Campbell G, Prince R, Fang FC: Genetic and redox determinants of nitric oxide cytotoxicity in a Salmonella typhimurium model. Proc Natl Acad Sci USA. 1995, 92: 6399-6403. 10.1073/pnas.92.14.6399

Poole LB: Bacterial defenses against oxidants: mechanistic features of cysteine-based peroxidases and their flavoprotein reductases. Arch Biochem Biophys. 2005, 433: 240-254. 10.1016/j.abb.2004.09.006

Driessen M, Postma PW, van Dam K: Energetics of glucose uptake in Salmonella typhimurium. Arch Microbiol. 1987, 146: 358-361. 10.1007/BF00410936

Shamanna DK, Sanderson KE: Uptake and catabolism of D-xylose in Salmonella typhimurium LT2. J Bacteriol. 1979, 139: 64-70.

Gutnick D, Calvo JM, Klopotowski T, Ames BN: Compounds which serve as the sole source of carbon or nitrogen for Salmonella typhimurium LT-2. J Bacteriol. 1969, 100: 215-219.

Joyce AR, Reed JL, White A, Edwards R, Osterman A, Baba T, Mori H, Lesely SA, Palsson BO, Agarwalla S: Experimental and computational assessment of conditionally essential genes in Escherichia coli. J Bacteriol. 2006, 188: 8259-8271. 10.1128/JB.00740-06

Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H: Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol. 2006, 2: 1-11. 10.1038/msb4100050.

Keseler IM, Collado-Vides J, Gama-Castro S, Ingraham J, Paley S, Paulsen IT, Peralta-Gil M, Karp PD: EcoCyc: a comprehensive database resource for Escherichia coli. Nucleic Acids Res. 2005, 33: D334-7. 10.1093/nar/gki108

Fields PI, Swanson RV, Haidaris CG, Heffron F: Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc Natl Acad Sci USA. 1986, 83: 5189-5193. 10.1073/pnas.83.14.5189

Gunn JS, Ryan SS, Van Velkinburgh JC, Ernst RK, Miller SI: Genetic and functional analysis of a PmrA-PmrB-regulated locus necessary for lipopolysaccharide modification, antimicrobial peptide resistance, and oral virulence of Salmonella enterica serovar typhimurium. Infect Immun. 2000, 68: 6139-6146. 10.1128/IAI.68.11.6139-6146.2000

Valdivia RH, Falkow S: Fluorescence-based isolation of bacterial genes expressed within host cells. Science. 1997, 277: 2007-2011. 10.1126/science.277.5334.2007

Fang FC, Libby SJ, Castor ME, Fung AM: Isocitrate lyase (AceA) is required for Salmonella persistence but not for acute lethal infection in mice. Infect Immun. 2005, 73: 2547-2549. 10.1128/IAI.73.4.2547-2549.2005

Lawhon SD, Maurer R, Suyemoto M, Altier C: Intestinal short-chain fatty acids alter Salmonella typhimurium invasion gene expression and virulence through BarA/SirA. Mol Microbiol. 2002, 46: 1451-1464. 10.1046/j.1365-2958.2002.03268.x

Buchmeier NA, Libby SJ, Xu Y, Loewen PC, Switala J, Guiney DG, Fang FC: DNA repair is more important than catalase for Salmonella virulence in mice. J Clin Invest. 1995, 95: 1047-1053. 10.1172/JCI117750

Tsolis RM, Baumler AJ, Heffron F: Role of Salmonella typhimurium Mn-superoxide dismutase (SodA) in protection against early killing by J774 macrophages. Infect Immun. 1995, 63: 1739-1744.

Krishnakumar R, Craig M, Imlay JA, Slauch JM: Differences in enzymatic properties allow SodCI but not SodCII to contribute to virulence in Salmonella enterica serovar Typhimurium strain 14028. J Bacteriol. 2004, 186: 5230-5238. 10.1128/JB.186.16.5230-5238.2004

Baumler AJ, Kusters JG, Stojiljkovic I, Heffron F: Salmonella typhimurium loci involved in survival within macrophages. Infect Immun. 1994, 62: 1623-1630.

Hoiseth SK, Stocker BA: Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature. 1981, 291: 238-239. 10.1038/291238a0

McFarland WC, Stocker BA: Effect of different purine auxotrophic mutations on mouse-virulence of a Vi-positive strain of Salmonella dublin and of two strains of Salmonella typhimurium. Microb Pathog. 1987, 3: 129-141. 10.1016/0882-4010(87)90071-4

Becker D, Selbach M, Rollenhagen C, Ballmaier M, Meyer TF, Mann M, Bumann D: Robust Salmonella metabolism limits possibilities for new antimicrobials. Nature. 2006, 440: 303-307. 10.1038/nature04616

Knuth K, Niesalla H, Hueck CJ, Fuchs TM: Large-scale identification of essential Salmonella genes by trapping lethal insertions. Mol Microbiol. 2004, 51: 1729-1744. 10.1046/j.1365-2958.2003.03944.x

Karatzas KA, Randall LP, Webber M, Piddock LJ, Humphrey TJ, Woodward MJ, Coldham NG: Phenotypic and proteomic characterization of multiply antibiotic-resistant variants of Salmonella enterica serovar Typhimurium selected following exposure to disinfectants. Appl Environ Microbiol. 2008, 74: 1508-1516. 10.1128/AEM.01931-07

Teusink B, Wiersma A, Molenaar D, Francke C, de Vos WM, Siezen RJ, Smid EJ: Analysis of growth of Lactobacillus plantarum WCFS1 on a complex medium using a genome-scale metabolic model. J Biol Chem. 2006, 281: 40041-40048. 10.1074/jbc.M606263200

Burgard AP, Nikolaev EV, Schilling CH, Maranas CD: Flux coupling analysis of genome-scale metabolic network reconstructions. Genome Res. 2004, 14: 301-312. 10.1101/gr.1926504

Adkins JN, Mottaz HM, Norbeck AD, Gustin JK, Rue J, Clauss TR, Purvine SO, Rodland KD, Heffron F, Smith RD: Analysis of the Salmonella typhimurium proteome through environmental response toward infectious conditions. Mol Cell Proteomics. 2006, 5: 1450-1461. 10.1074/mcp.M600139-MCP200

Kummel A, Panke S, Heinemann M: Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data. Mol Syst Biol. 2006, 2: 2006.0034 10.1038/msb4100074

Van Dien SJ, Lidstrom ME: Stoichiometric model for evaluating the metabolic capabilities of the facultative methylotroph Methylobacterium extorquens AM1, with application to reconstruction of C(3) and C(4) metabolism. Biotechnol Bioeng. 2002, 78: 296-312. 10.1002/bit.10200

Tannler S, Decasper S, Sauer U: Maintenance metabolism and carbon fluxes in Bacillus species. Microb Cell Fact. 2008, 7: 19- 10.1186/1475-2859-7-19

Schuetz R, Kuepfer L, Sauer U: Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol. 2007, 3: 119- 10.1038/msb4100162

Mahadevan R, Schilling CH: The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng. 2003, 5: 264-276. 10.1016/j.ymben.2003.09.002

Lee AH, Papari M, Daefler S: Identification of a NIPSNAP homologue as host cell target for Salmonella virulence protein SpiC. Cell Microbiol. 2002, 4: 739-750. 10.1046/j.1462-5822.2002.00225.x