Constant-depth circuits for dynamic simulations of materials on quantum computers

Materials Theory - Tập 6 - Trang 1-18 - 2022
Lindsay Bassman Oftelie1, Roel Van Beeumen1, Ed Younis1, Ethan Smith2, Costin Iancu1, Wibe A. de Jong1
1Lawrence Berkeley National Lab, Berkeley, USA
2University of California, Berkeley, Berkeley, USA

Tóm tắt

Dynamic simulation of materials is a promising application for near-term quantum computers. Current algorithms for Hamiltonian simulation, however, produce circuits that grow in depth with increasing simulation time, limiting feasible simulations to short-time dynamics. Here, we present a method for generating circuits that are constant in depth with increasing simulation time for a specific subset of one-dimensional (1D) materials Hamiltonians, thereby enabling simulations out to arbitrarily long times. Furthermore, by removing the effective limit on the number of feasibly simulatable time-steps, the constant-depth circuits enable Trotter error to be made negligibly small by allowing simulations to be broken into arbitrarily many time-steps. For an N-spin system, the constant-depth circuit contains only $\mathcal {O}(N^{2})$ CNOT gates. Such compact circuits enable us to successfully execute long-time dynamic simulation of ubiquitous models, such as the transverse field Ising and XY models, on current quantum hardware for systems of up to 5 qubits without the need for complex error mitigation techniques. Aside from enabling long-time dynamic simulations with minimal Trotter error for a specific subset of 1D Hamiltonians, our constant-depth circuits can advance materials simulations on quantum computers more broadly in a number of indirect ways.

Tài liệu tham khảo

D. S. Abrams, S. Lloyd, Simulation of many-body Fermi systems on a universal quantum computer. Phys. Rev. Lett.79(13), 2586–2589 (1997). https://doi.org/10.1103/PhysRevLett.79.2586. M. Acharyya, Nonequilibrium phase transition in the kinetic ising model: Is the transition point the maximum lossy point?Phys. Rev. E. 58(1), 179 (1998). M. Acharyya, B. K. Chakrabarti, Response of ising systems to oscillating and pulsed fields: Hysteresis, ac, and pulse susceptibility. Phys. Rev. B. 52(9), 6550 (1995). A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, M. Head-Gordon, Simulated quantum computation of molecular energies. Science. 309(5741), 1704–1707 (2005). Y. Atia, D. Aharonov, Fast-forwarding of Hamiltonians and exponentially precise measurements. Nat. Commun.8(1), 1572 (2017). https://doi.org/10.1038/s41467-017-01637-7. R. Barends, A. Shabani, L. Lamata, J. Kelly, A. Mezzacapo, U. Las Heras, R. Babbush, A. G. Fowler, B. Campbell, Y. Chen, et al, Digitized adiabatic quantum computing with a superconducting circuit. Nature. 534(7606), 222–226 (2016). L. Bassman Oftelie, S. Gulania, C. Powers, R. Li, T. Linker, K. Liu, T. K. S. Kumar, R. K. Kalia, A. Nakano, P. Vashishta, Domain-specific compilers for dynamic simulations of quantum materials on quantum computers. Quantum Sci. Technol.6(1), 14007 (2020). https://doi.org/10.1088/2058-9565/abbea1. L. Bassman Oftelie, K. Klymko, N. M. Tubman, W. A. de Jong, Computing free energies with fluctuation relations on quantum computers (2021). https://arxiv.org/abs/2103.09846. Accessed 15 Dec 2021. L. Bassman Oftelie, K. Liu, A. Krishnamoorthy, T. Linker, Y. Geng, D. Shebib, S. Fukushima, F. Shimojo, R. K. Kalia, A. Nakano, et al, Towards simulation of the dynamics of materials on quantum computers. Phys. Rev. B. 101(18), 184305 (2020). https://doi.org/10.1103/PhysRevB.101.184305. L. Bassman Oftelie, M. Urbanek, M. Metcalf, J. Carter, A. F. Kemper, W. A. de Jong, Simulating Quantum Materials with Digital Quantum Computers. Quantum Sci. Technol.6:, 043002 (2021). L. Bassman Oftelie, R Van Beeumen, E Younis, E Smith, Constant Depth Circuits for Dynamic Simulations of Materials on Quantum Computers (2021). https://github.com/lebassman/Constant_Depth_Circuits. Accessed 15 Dec 2021. Berkeley Quantum Synthesis Toolkit (2021). https://bqskit.lbl.gov. Accessed 15 Dec 2021. D. W. Berry, G. Ahokas, R. Cleve, B. C. Sanders, Efficient quantum algorithms for simulating sparse Hamiltonians. Comm. Math. Phys.270(2), 359–371 (2007). https://doi.org/10.1007/s00220-006-0150-x. R. Blinc, B. žekš, J. Sampaio, A. Pires, F. S. Barreto, Ising model in a transverse tunneling field and proton-lattice interaction in H-bonded ferroelectrics. Phys. Rev. B. 20(5), 1991 (1979). A. Botea, A. Kishimoto, R. Marinescu, in Proceedings of the 11th International Symposium on Combinatorial Search (SoCS 2018). On the complexity of quantum circuit compilation (AAAI PressPalo Alto, 2018), pp. 138–142. D. J. Brod, A. M. Childs, The computational power of matchgates and the XY interaction on arbitrary graphs. Quantum Inf. Comput.14(11-12), 901–916 (2014). https://doi.org/10.26421/QIC14.11-12. D. J. Brod, E. F. Galvão, Geometries for universal quantum computation with matchgates. Phys. Rev. A. 86(5), 52307 (2012). https://doi.org/10.1103/PhysRevA.86.052307. E. Campbell, Random compiler for fast hamiltonian simulation. Phys. Rev. Lett.123(7), 070503 (2019). Y. -H. Chen, A. Kalev, I. Hen, A quantum algorithm for time-dependent hamiltonian simulation by permutation expansion (2021). https://arxiv.org/abs/2103.15334. Accessed 15 Dec 2021. H. Cheraghi, S. Mahdavifar, probing the possibilities of ergodicity in the 1d spin-1/2 xy chain with quench dynamics. Sci. Rep.10(1), 1–10 (2020). A. M. Childs, R. Kothari, Limitations on the simulation of non-sparse Hamiltonians. Quantum Inf. Comput.10(7-8), 669–684 (2010). https://doi.org/10.26421/QIC10.7-8-7. A. M. Childs, D. Maslov, Y. Nam, N. J. Ross, Y. Su, Toward the first quantum simulation with quantum speedup. Proc. Natl. Acad. Sci.115(38), 9456–9461 (2018). A. M. Childs, Y. Su, M. C. Tran, N. Wiebe, S. Zhu, Theory of trotter error with commutator scaling. Phys. Rev. X. 11(1), 011020 (2021). A. M. Childs, N. Wiebe, Hamiltonian simulation using linear combinations of unitary operations (2012). https://arxiv.org/abs/1202.5822. Accessed 15 Dec 21. L. Cincio, K. Rudinger, M. Sarovar, P. J. Coles, Machine learning of noise-resilient quantum circuits. PRX Quantum. 2:, 010324 (2020). C. Cîrstoiu, Z. Holmes, J. Iosue, L. Cincio, P. J. Coles, A. Sornborger, Variational fast forwarding for quantum simulation beyond the coherence time. NPJ Quantum Inf.6(1), 82 (2020). https://doi.org/10.1038/s41534-020-00302-0. A. De Vos, S. De Baerdemacker, Block-ZXZ synthesis of an arbitrary quantum circuit. Phys. Rev. A.94(5), 52317 (2016). https://doi.org/10.1103/PhysRevA.94.052317. R. P. Feynman, Simulating physics with computers. Int. J. Theor. Phys.21(6), 467–488 (1982). https://doi.org/10.1007/BF02650179. F. Gómez-Ruiz, J. Mendoza-Arenas, F. Rodríguez, C. Tejedor, L. Quiroga, Quantum phase transitions detected by a local probe using time correlations and violations of leggett-garg inequalities. Phys. Rev. B. 93(3), 035441 (2016). E. Granato, Critical behavior of a one-dimensional frustrated quantum xy model. Phys. Rev. B. 45(5), 2557 (1992). S. Gu, R. D. Somma, B. Şahinoğlu, Fast-forwarding quantum evolution (2021). https://arxiv.org/abs/2105.07304. Accessed 15 Dec 21. E. Gustafson, P. Dreher, Z. Hang, Y. Meurice, Benchmarking quantum computers for real-time evolution of a (1+1) field theory with error mitigation. arXiv preprint arXiv:1910.09478 (2019). E. Gustafson, Y. Meurice, J. Unmuth-Yockey, Quantum simulation of scattering in the quantum ising model. Phys. Rev. D. 99(9), 094503 (2019). D. Herr, F. Nori, S. J. Devitt, Optimization of lattice surgery is NP-hard. NPJ Quantum Inf.3(1), 35 (2017). https://doi.org/10.1038/s41534-017-0035-1. R. Iten, R. Colbeck, I. Kukuljan, J. Home, M. Christandl, Quantum circuits for isometries. Phys. Rev. A. 93(3), 032318 (2016). https://doi.org/10.1103/PhysRevA.93.032318. S. Khatri, R. LaRose, A. Poremba, L. Cincio, A. T. Sornborger, P. J. Coles, Quantum-assisted quantum compiling. Quantum. 3:, 140 (2019). https://doi.org/10.22331/q-2019-05-13-140. I. D. Kivlichan, C. Gidney, D. W. Berry, N. Wiebe, J. McClean, W. Sun, Z. Jiang, N. Rubin, A. Fowler, A Aspuru-Guzik, et al, Improved fault-tolerant quantum simulation of condensed-phase correlated electrons via trotterization. Quantum. 4:, 296 (2020). H. Lamm, S. Lawrence, Simulation of nonequilibrium dynamics on a quantum computer. Phys. Rev. Lett.121(17), 170501 (2018). Y. Li, S. C. Benjamin, Efficient variational quantum simulator incorporating active error minimization. Phys. Rev. X. 7(2), 021050 (2017). S. Lloyd, Universal quantum simulators. Science. 273(5278), 1073–1078 (1996). https://doi.org/10.1126/science.273.5278.1073. E. A. Martinez, T. Monz, D. Nigg, P. Schindler, R. Blatt, Compiling quantum algorithms for architectures with multi-qubit gates. New J. Phys.18(6), 063029 (2016). https://doi.org/10.1088/1367-2630/18/6/063029. M. Möttönen, J. J. Vartiainen, V. Bergholm, M. M. Salomaa, Quantum circuits for general multiqubit gates. Phys. Rev. Lett.93(13), 130502 (2004). https://doi.org/10.1103/PhysRevLett.93.130502. P. Murali, J. M. Baker, A. Javadi-Abhari, F. T. Chong, M. Martonosi, in Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS ’19). Noise-Adaptive Compiler Mappings for Noisy Intermediate-Scale Quantum Computers (ACM, 2019), pp. 1015–1029. https://doi.org/10.1145/3297858.3304075. C. Neill, T. McCourt, X. Mi, Z. Jiang, M. Niu, W. Mruczkiewicz, I. Aleiner, F. Arute, K. Arya, J. Atalaya, et al, Accurately computing the electronic properties of a quantum ring. Nature. 594(7864), 508–512 (2021). D. Poulin, A. Qarry, R. Somma, F. Verstraete, Quantum simulation of time-dependent Hamiltonians and the convenient illusion of Hilbert space. Phys. Rev. Lett.106(17), 170501 (2011). https://doi.org/10.1103/PhysRevLett.106.170501. J. Preskill, Quantum Computing in the NISQ era and beyond. Quantum. 2:, 79 (2018). https://doi.org/10.22331/q-2018-08-06-79. S. Sides, P. Rikvold, M. Novotny, Kinetic ising model in an oscillating field: Finite-size scaling at the dynamic phase transition. Phys. Rev. Lett.81(4), 834 (1998). A. Smith, M. S. Kim, F. Pollmann, J. Knolle, Simulating quantum many-body dynamics on a current digital quantum computer. NPJ Quantum Inf.5(1), 106 (2019). https://doi.org/10.1038/s41534-019-0217-0. S. -N. Sun, M. Motta, R. N. Tazhigulov, A. T. Tan, G. K. -L. Chan, A. J. Minnich, Quantum computation of finite-temperature static and dynamical properties of spin systems using quantum imaginary time evolution. PRX Quantum. 2(1), 010317 (2021). S. Suzuki, J. Inoue, B. K. Chakrabarti, Quantum Ising Phases and Transitions in Transverse Ising Models (Springer Berlin Heidelberg, Germany, 2012). https://books.google.com/books?id=y1S5BQAAQBAJ. B. M. Terhal, D. P. DiVincenzo, Classical simulation of noninteracting-fermion quantum circuits. Phys. Rev. A. 65(3), 032325 (2002). T. Tomé, M. J. de Oliveira, Dynamic phase transition in the kinetic ising model under a time-dependent oscillating field. Phys. Rev. A. 41(8), 4251 (1990). M. C. Tran, S. -K. Chu, Y. Su, A. M. Childs, A. V. Gorshkov, Destructive error interference in product-formula lattice simulation. Phys. Rev. Lett.124(22), 220502 (2020). H. F. Trotter, On the product of semi-groups of operators. Proc. Amer. Math. Soc.10(4), 545–551 (1959). https://doi.org/10.1112/jlms/s1-38.1.66. L. G. Valiant, Quantum circuits that can be simulated classically in polynomial time. SIAM J. Comput.31(4), 1229–1254 (2002). https://doi.org/10.1137/S0097539700377025. G. Vidal, C. M. Dawson, Universal quantum circuit for two-qubit transformations with three controlled-NOT gates. Phys. Rev. A. 69(1), 10301 (2004). https://doi.org/10.1103/PhysRevA.69.010301. N. Wiebe, D. W. Berry, P. Høyer, B. C. Sanders, Simulating quantum dynamics on a quantum computer. J. Phys. A Math. Theor.44(44), 445308 (2011). https://doi.org/10.1088/1751-8113/44/44/445308. W. Wu, B. Ellman, T. Rosenbaum, G. Aeppli, D. Reich, From classical to quantum glass. Phys. Rev. Lett.67(15), 2076 (1991). X. Yang, G. Zhang, Z. Song, Phase transition in phase transition lines of quantum xy model. J. Phys. Condens. Matter. 31(24), 245401 (2019). K. Yeter-Aydeniz, G. Siopsis, R. C. Pooser, Scattering in the ising model with the quantum lanczos algorithm. New J. Phys.23(4), 043033 (2021). https://doi.org/10.1088/1367-2630/abe63d. E. Younis, K. Sen, K. Yelick, C. Iancu, in 2021 IEEE International Conference on Quantum Computing and Engineering (QCE). QFAST: Conflating Search and Numerical Optimization for Scalable Quantum Circuit Synthesis, (2021), pp. 232–243. https://doi.org/10.1109/QCE52317.2021.00041. C. Zalka, Simulating quantum systems on a quantum computer. Proc. R. Soc. A. 454(1969), 313–322 (1998). https://doi.org/10.1098/rspa.1998.0162. D. Zhu, S. Johri, N. M. Linke, K. Landsman, C. H. Alderete, N. H. Nguyen, A. Matsuura, T. Hsieh, C. Monroe, Generation of thermofield double states and critical ground states with a quantum computer. Proc. Natl. Acad. Sci.117(41), 25402–25406 (2020). A. Zhukov, S. Remizov, W. Pogosov, Y. E. Lozovik, Algorithmic simulation of far-from-equilibrium dynamics using quantum computer. Quantum Inf. Process.17(9), 223 (2018).