Consistent gaussian basis sets of double‐ and triple‐zeta valence with polarization quality of the fifth period for solid‐state calculations

Journal of Computational Chemistry - Tập 39 Số 19 - Trang 1285-1290 - 2018
Joachim Laun1, Daniel Vilela Oliveira1, Thomas Bredow1
1Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, University of Bonn, Beringstr. 4, Bonn D‐53115, Germany

Tóm tắt

Consistent basis sets of double‐ and triple‐zeta valence with polarization quality for the fifth period have been derived for periodic quantum‐chemical solid‐state calculations with the crystalline‐orbital program CRYSTAL. They are an extension of the pob‐TZVP basis sets, and are based on the full‐relativistic effective core potentials (ECPs) of the Stuttgart/Cologne group and on the def2‐SVP and def2‐TZVP valence basis of the Ahlrichs group. We optimized orbital exponents and contraction coefficients to supply robust and stable self‐consistent field (SCF) convergence for a wide range of different compounds. The computed crystal structures are compared to those obtained with standard basis sets available from the CRYSTAL basis set database. For the applied hybrid density functional PW1PW, the average deviations of calculated lattice constants from experimental references are smaller with pob‐DZVP and pob‐TZVP than with standard basis sets. © 2018 Wiley Periodicals, Inc.

Từ khóa


Tài liệu tham khảo

10.1002/(SICI)1096-987X(199610)17:13<1571::AID-JCC9>3.0.CO;2-P

10.1021/ci600510j

10.1063/1.463096

10.1039/b508541a

10.1063/1.467146

10.1063/1.1627293

Dovesi R., 2014, CRYSTAL14 User's Manual

10.1002/qua.24658

10.1002/jcc.23153

ECP Database http://www.tc.uni-koeln.de/PP/clickpse.en.html(accessed June 24 2017).

10.1063/1.1856451

10.1063/1.2148945

10.1063/1.2647019

10.1016/j.chemphys.2004.10.005

10.1063/1.1305880

10.1063/1.1622924

10.1021/jp065887l

10.1103/PhysRevB.61.5194

10.1103/PhysRevB.75.144102

10.1103/PhysRevB.72.125101

10.1016/S0168-9002(97)00048-X

CRYSTAL Basis Sets Library http://www.crystal.unito.it/basis-sets.php(accessed June 24 2017).

10.1103/PhysRevB.77.134515

10.1021/acs.jpclett.5b01071

Gennard S., 2000, Unpublished

10.1002/zaac.200400166

10.1103/PhysRevB.56.10105

10.1039/a607439a

10.3952/physics.v53i3.2720

Kokalj A., 1998, Unpublished

10.1103/PhysRevB.63.165410

10.1088/0953-8984/10/38/006

10.1063/1.2085170

10.1016/S0039-6028(99)00507-5

10.1103/PhysRevB.57.4327

10.1107/S0567739470000906

10.1088/0953-8984/5/18/019

10.1002/zaac.19392420103

10.1002/pssb.200541403

10.1039/b605105g

10.1002/zaac.19582950308

10.1107/S0567740869005255

Schoenburg H., 1954, Acta Chem. Scand., 8, 7

10.1016/j.jssc.2005.07.021

10.1016/j.ssi.2012.02.007

Swanson H., 1959, Natl. Bureau Stand. Circ., 539, 20

10.1016/j.physb.2011.05.036

10.1021/ja01524a008

10.1002/zaac.19522710105

10.1088/0965-0393/1/2/005

10.1063/1.1341209

10.1103/PhysRevB.41.12079

Ahtee M.Lattice Constants of Some Binary Alkali Halide Solid Solutions; Suomalainen Tiedeakatemia 1969.

10.1016/0301-0104(91)87032-Q

10.1016/0022-5088(66)90016-6

10.1107/S0567740870005022

10.1002/zaac.19552810105

10.1524/zkri.2000.215.7.424

Dumora D., 1968, Compt. Rend., 266, 276

10.1021/j150521a002

10.1107/S0365110X59001530

10.1007/BF01166893

Kihlborg L., 1963, Arkiv Kemi, 21, 357

10.1134/1.1405882

G.Kresse M.Marsman J.Furthmller Vienna Ab initio Simulation Package (VASP) the guide Computational Materials Physics Faculty of Physics Universität Wien Vienna Austria 2014.