Các dư lượng được bảo tồn trong miền NAC NAM-A1 của lúa mì (Triticum aestivum) là cần thiết cho việc gắn kết protein và khi bị đột biến dẫn đến sự chậm trễ trong sự lão hóa cuống và lá cờ

Sophie A Harrington1, Lauren E. Overend1, Nicolás Cobo2, Philippa Borrill1, Cristóbal Uauy1
1John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
2Department of Plant Sciences, University of California, Davis, Davis, CA, 95616, USA

Tóm tắt

Tóm tắt Cơ sở

Các yếu tố phiên mã NAC chứa năm tiểu vùng bảo tồn cao, cần thiết cho sự tạo dimer của protein và sự gắn kết DNA. Chỉ một số ít dư lượng trong các tiểu vùng này đã được xác định là cần thiết cho chức năng của protein, và ít hơn nữa đã được chứng minh là có ý nghĩa sinh học trong thực vật. Ở đây, chúng tôi sử dụng một yếu tố điều hòa tích cực cho sự lão hóa trong lúa mì, NAM-A1, để kiểm tra tác động của các đột biến nghĩa tại các dư lượng cụ thể, được bảo tồn cao của miền NAC lên chức năng của protein.

Kết quả

Chúng tôi đã xác định các đột biến nghĩa trong năm dư lượng được bảo tồn cao của miền NAC của NAM-A1 trong một quần thể TILLING tetraploid. Các dòng TILLING chứa những đột biến này, cùng với các kiểm soát đột biến đồng nghĩa và không bảo tồn, đã được nuôi trồng dưới điều kiện nhà kính và đánh giá về sự lão hóa. Bốn trong số năm đột biến cho thấy sự chậm trễ đáng kể và nhất quán trong sự lão hóa cuống nhưng không có ảnh hưởng nhất quán đến sự lão hóa của lá cờ. Tất cả bốn alen đột biến với kiểu hình lão hóa chậm cũng mất khả năng tương tác với homoeolog NAM-B1 trong một thử nghiệm hai-hybrid ở nấm men. Hai trong số các dư lượng này đã được chứng minh là có liên quan đến chức năng miền NAC ở Arabidopsis, cho thấy sự bảo tồn chức năng của các dư lượng giữa các loài. Ba trong số bốn alen này dẫn đến phản ứng chết tế bào suy giảm so với NAM-A1 kiểu dại khi được biểu hiện tạm thời ở Nicotiana benthamiana. Một trong các đột biến này được kiểm tra thêm trong điều kiện thực địa, trong đó có sự chậm trễ đáng kể và nhất quán ở cả sự lão hóa cuống và lá.

Từ khóa

#NAC transcription factors #NAM-A1 #lúa mì #đột biến nghĩa #lão hóa cuống #lão hóa lá cờ #nghiên cứu sinh học thực vật

Tài liệu tham khảo

Souer E, van Houwelingen A, Kloos D, Mol J, Koes R. The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell. 1996;85(2):159–70.

Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M. Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell. 1997;9(6):841.

Xie Q, Frugis G, Colgan D, Chua N-H. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev. 2000;14(23):3024–36.

Guo Y, Gan S. AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J. 2006;46(4):601–12.

Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science. 2006;314(5803):1298–301.

Collinge M, Boller T. Differential induction of two potato genes, Stprx2 and StNAC, in response to infection by Phytophthora infestans and to wounding. Plant Mol Biol. 2001;46(5):521–9.

Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, et al. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell. 2004;16(9):2481–98.

Jensen MK, Hagedorn PH, de Torres-Zabala M, Grant MR, Rung JH, Collinge DB, et al. Transcriptional regulation by an NAC (NAM-ATAF1,2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis. Plant J. 2008;56(6):867–80.

Xue G-P, Bower NI, McIntyre CL, Riding GA, Kazan K, Shorter R. TaNAC69 from the NAC superfamily of transcription factors is up-regulated by abiotic stresses in wheat and recognises two consensus DNA-binding sequences. Funct Plant Biol. 2006;33(1):43–57.

Xia N, Zhang G, Liu XY, Deng L, Cai GL, Zhang Y, et al. Characterization of a novel wheat NAC transcription factor gene involved in defense response against stripe rust pathogen infection and abiotic stresses. Mol Biol Rep. 2010;37(8):3703–12.

Xia N, Zhang G, Sun Y-F, Zhu L, Xu L-S, Chen X-M, et al. TaNAC8, a novel NAC transcription factor gene in wheat, responds to stripe rust pathogen infection and abiotic stresses. Physiol Mol Plant Pathol. 2010;74(5):394–402.

Tang Y, Liu M, Gao S, Zhang Z, Zhao X, Zhao C, et al. Molecular characterization of novel TaNAC genes in wheat and overexpression of TaNAC2a confers drought tolerance in tobacco. Physiol Plant. 2012;144(3):210–24.

Mao X, Zhang H, Qian X, Li A, Zhao G, Jing R. TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. J Exp Bot. 2012;63(8):2933–46.

Feng H, Duan X, Zhang Q, Li X, Wang B, Huang L, et al. The target gene of tae-miR164, a novel NAC transcription factor from the NAM subfamily, negatively regulates resistance of wheat to stripe rust. Mol Plant Pathol. 2014;15(3):284–96.

Mao X, Chen S, Li A, Zhai C, Jing R. Novel NAC transcription factor TaNAC67 confers enhanced multi-abiotic stress tolerances in Arabidopsis. PLoS One. 2014;9(1):e84359.

Huang Q, Wang Y, Li B, Chang J, Chen M, Li K, et al. TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis. BMC Plant Biol. 2015;15:268.

Wang F, Lin R, Feng J, Chen W, Qiu D, Xu S. TaNAC1 acts as a negative regulator of stripe rust resistance in wheat, enhances susceptibility to Pseudomonas syringae, and promotes lateral root development in transgenic Arabidopsis thaliana. Front Plant Sci. 2015;6:108.

Chen D, Chai S, McIntyre CL, Xue G-P. Overexpression of a predominantly root-expressed NAC transcription factor in wheat roots enhances root length, biomass and drought tolerance. Plant Cell Rep. 2018;37(2):225–37.

Zhao D, Derkx AP, Liu DC, Buchner P, Hawkesford MJ. Overexpression of a NAC transcription factor delays leaf senescence and increases grain nitrogen concentration in wheat. Plant Biol. 2015;17(4):904–13.

Ernst HA, Olsen AN, Larsen S, Lo Leggio L. Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. EMBO Rep. 2004;5(3):297–303.

Welner DH, Lindemose S, Grossmann JG, Mollegaard NE, Olsen AN, Helgstrand C, et al. DNA binding by the plant-specific NAC transcription factors in crystal and solution: a firm link to WRKY and GCM transcription factors. Biochem J. 2012;444(3):395–404.

Borrill P, Harrington SA, Uauy C. Genome-wide sequence and expression analysis of the NAC transcription factor family in Polyploid wheat. G3 (Bethesda, Md). 2017;7(9):3019–29.

Olsen AN, Ernst HA, Leggio LL, Skriver K. NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci. 2005;10(2):79–87.

Olsen AN, Ernst HA, Leggio LL, Skriver K. DNA-binding specificity and molecular functions of NAC transcription factors. Plant Sci. 2005;169(4):785–97.

Kang M, Kim S, Kim HJ, Shrestha P, Yun JH, Phee BK, et al. The C-domain of the NAC transcription factor ANAC019 is necessary for pH-tuned DNA binding through a histidine switch in the N-domain. Cell Rep. 2018;22(5):1141–50.

Avni R, Zhao R, Pearce S, Jun Y, Uauy C, Tabbita F, et al. Functional characterization of GPC-1 genes in hexaploid wheat. Planta. 2014;239(2):313–24.

Pearce S, Tabbita F, Cantu D, Buffalo V, Avni R, Vazquez-Gross H, et al. Regulation of Zn and Fe transporters by the GPC1 gene during early wheat monocarpic senescence. BMC Plant Biol. 2014;14(1):368.

Krasileva KV, Vasquez-Gross HA, Howell T, Bailey P, Paraiso F, Clissold L, et al. Uncovering hidden variation in polyploid wheat. Proc Natl Acad Sci. 2017;114(6):E913.

Vullo A, Allot A, Zadissia A, Yates A, Luciani A, Moore B, et al. Ensembl genomes 2018: an integrated omics infrastructure for non-vertebrate species. Nucleic Acids Res. 2017;46(D1):D802–D8.

Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N, et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science. 2018;361(6403):eaar7191.

Capra JA, Singh M. Predicting functionally important residues from sequence conservation. Bioinformatics. 2007;23(15):1875–82.

Cunningham BC, Wells JA. High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis. Science. 1989;244(4908):1081–5.

Jeong JS, Park YT, Jung H, Park S-H, Kim J-K. Rice NAC proteins act as homodimers and heterodimers. Plant Biotechnology Reports. 2009;3(2):127–34.

Maqbool A, Saitoh H, Franceschetti M, Stevenson CEM, Uemura A, Kanzaki H, et al. Structural basis of pathogen recognition by an integrated HMA domain in a plant NLR immune receptor. eLife. 2015;4:e08709.

Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res. 2003;10(6):239–47.

Štros M, Launholt D, Grasser KD. The HMG-box: a versatile protein domain occurring in a wide variety of DNA-binding proteins. Cell Mol Life Sci. 2007;64(19):2590.

Noguero M, Atif RM, Ochatt S, Thompson RD. The role of the DNA-binding one zinc finger (DOF) transcription factor family in plants. Plant Sci. 2013;209:32–45.

Uauy C, Wulff BBH, Dubcovsky J. Combining traditional mutagenesis with new high-throughput sequencing and genome editing to reveal hidden variation in Polyploid wheat. Annu Rev Genet. 2017;51(1):435–54.

Worland AJ. The influence of flowering time genes on environmental adaptability in European wheats. Euphytica. 1996;89(1):49–57.

Grogan SM, Brown-Guedira G, Haley SD, McMaster GS, Reid SD, Smith J, et al. Allelic variation in developmental genes and effects on winter wheat heading date in the U.S. Great Plains. PLoS One. 2016;11(4):e0152852.

Whittal A, Kaviani M, Graf R, Humphreys G, Navabi A. Allelic variation of vernalization and photoperiod response genes in a diverse set of North American high latitude winter wheat genotypes. PloS one. 2018;13(8):e0203068-e.

Cormier F, Throude M, Ravel C, Gouis LJ, Leveugle M, Lafarge S, et al. Detection of NAM-A1 natural variants in bread wheat reveals differences in haplotype distribution between a worldwide Core collection and European elite germplasm. Agronomy. 2015;5(2).

Zong Y, Wang Y, Li C, Zhang R, Chen K, Ran Y, et al. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol. 2017;35:438.

Borrill P, Harrington SA, Simmonds J, Uauy C. Identification of transcription factors regulating senescence in wheat through gene regulatory network modelling. bioRxiv. 2018:456749.

Waters BM, Uauy C, Dubcovsky J, Grusak MA. Wheat (Triticum aestivum) NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain. J Exp Bot. 2009;60(15):4263–74.

Guttieri MJ, Stein RJ, Waters BM. Nutrient partitioning and grain yield of TaNAM-RNAi wheat under abiotic stress. Plant Soil. 2013;371(1):573–91.

Borrill P, Ramirez-Gonzalez R, Uauy C. expVIP: a customizable RNA-seq data analysis and visualization platform. Plant Physiol. 2016;170(4):2172.

Ramírez-González RH, Borrill P, Lang D, Harrington SA, Brinton J, Venturini L, et al. The transcriptional landscape of polyploid wheat. Science. 2018;361(6403):eaar6089.

Borrill PGM. The NAM-B1 transcription factor and the control of grain composition in wheat. UK: University of East Anglia; 2014. https://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-016-0889-y .

Borrill P, Fahy B, Smith AM, Uauy C. Wheat grain filling is limited by grain filling capacity rather than the duration of flag leaf photosynthesis: a case study using NAM RNAi plants. PLoS One. 2015;10(8):e0134947.

Garnett TP, Graham RD. Distribution and remobilization of Iron and copper in wheat. Ann Bot. 2005;95(5):817–26.

Kichey T, Hirel B, Heumez E, Dubois F, Le Gouis J. In winter wheat (Triticum aestivum L.), post-anthesis nitrogen uptake and remobilisation to the grain correlates with agronomic traits and nitrogen physiological markers. Field Crop Res. 2007;102(1):22–32.

Uauy C, Paraiso F, Colasuonno P, Tran RK, Tsai H, Berardi S, et al. A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat. BMC Plant Biol. 2009;9(1):115.

Zadoks JC, Chang TT, Konzak CF. A decimal code for the growth stages of cereals. Weed Res. 1974;14(6):415–21.

Wellburn AR. The spectral determination of chlorophylls a and b, as well as Total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol. 1994;144(3):307–13.

Ramirez-Gonzalez RH, Segovia V, Bird N, Fenwick P, Holdgate S, Berry S, et al. RNA-Seq bulked segregant analysis enables the identification of high-resolution genetic markers for breeding in hexaploid wheat. Plant Biotechnol J. 2015;13(5):613–24.

Ramirez-Gonzalez RH, Uauy C, PolyMarker CM. A fast polyploid primer design pipeline. Bioinformatics. 2015;31(12):2038–9.

Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal omega. Mol Syst Biol. 2011;7:539.

Ng PC, Henikoff SSIFT. Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31(13):3812–4.

Nakagawa T, Kurose T, Hino T, Tanaka K, Kawamukai M, Niwa Y, et al. Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. J Biosci Bioeng. 2007;104(1):34–41.

Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York, NY: Springer-Verlag; 2016.