Consequences of climate change on airborne pollen in Bavaria, Central Europe

Springer Science and Business Media LLC - Tập 21 - Trang 1-13 - 2021
Jesús Rojo1,2, Antonio Picornell3, Jose Oteros1,4, Matthias Werchan5, Barbora Werchan5, Karl-Christian Bergmann5, Matt Smith6, Ingrid Weichenmeier1, Carsten B. Schmidt-Weber1, Jeroen Buters1
1Center of Allergy & Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technische Universität München/Helmholtz Center Munich, Munich, Germany
2University of Castilla-La Mancha, Institute of Environmental Sciences, Toledo, Spain
3Department of Botany and Plant Physiology, University of Malaga, Malaga, Spain
4Department of Botany, Ecology and Plant Physiology, University of Cordoba, Cordoba, Spain
5Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
6School of Science and the Environment, University of Worcester, Worcester, UK

Tóm tắt

Climate change affects the reproductive life cycles of plants, including pollen production, which has consequences for allergic respiratory diseases. We examined climatic trends at eight locations in Bavaria, Southern Germany, with pollen time series of at least 10 years (up to 30 years in Munich). Climate change in Bavaria was characterized by a rise in temperature, but not during the winter. There is also a trend towards a more continental climate in Bavaria, which is significant in the Alps in the south of the territory. The influence of climate change depended on pollen type. Wind-pollinated arboreal species (e.g. Alnus, Betula and Cupressaceae/Taxaceae) showed advances in the start and end dates of pollen seasons and an increase in pollen load. These changes correlated negatively with late-winter (February) and spring temperatures (April). For herbaceous species, like Poaceae and Urticaceae, an earlier season was observed. Although precipitation is not a limiting factor in Southern Germany, water availability in the spring did influence the magnitude of grass pollen seasons. The effect of climatic change on the characteristics of pollen seasons was also more pronounced at higher altitudes, significant at > 800 m above sea level. Our results show that trends for start, end dates and intensity were similar at all locations, but only statistically significant at some. If we assume that earlier and more intense pollen seasons result in increases in prevalence and severity of allergic diseases, then the effect of climate change on public health in Bavaria may be significant.

Tài liệu tham khảo

Anders I, Stagl J, Auer I, Pavlik D (2014) Climate change in central and eastern Europe. In: Rannow S, Neubert M (eds) Managing protected areas in central and eastern Europe under climate change. Springer, Dordrecht, pp 17–30 Andersen TB (1991) A model to predict the beginning of the pollen season. Grana 30:269–275. https://doi.org/10.1080/00173139109427810 Ariano R, Canonica GW, Passalacqua G (2010) Possible role of climate changes in variations in pollen seasons and allergic sensitizations during 27 years. Ann Allergy Asthma Immunol 104:215–222. https://doi.org/10.1016/j.anai.2009.12.005 Barnes CS (2018) Impact of climate change on pollen and respiratory disease. Curr Allergy Asthma Rep 18. https://doi.org/10.1007/s11882-018-0813-7 Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A et al (2018) Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci Data 5:180214. https://doi.org/10.1038/sdata.2018.214 Biedermann T, Winther L, Till SJ, Panzner P, Knulst A et al (2019) Birch pollen allergy in Europe. Allergy all.13758. https://doi.org/10.1111/all.13758 Buters J, Alberternst B, Nawrath S, Wimmer M, Traidl-Hoffmann C et al (2015a) Ambrosia artemisiifolia (ragweed) in Germany–current presence, allergological relevance and containment procedures. Allergo J Int 24:108–120. https://doi.org/10.1007/s40629-015-0060-6 Buters J, Prank M, Sofiev M, Pusch G, Albertini R et al (2015b) Variation of the group 5 grass pollen allergen content of airborne pollen in relation to geographic location and time in season. J Allergy Clin Immunol 136:87–95.e6. https://doi.org/10.1016/j.jaci.2015.01.049 Buters JTM, Antunes C, Galveias A, Bergmann KC, Thibaudon M et al (2018) Pollen and spore monitoring in the world. Clin Transl Allergy 8. https://doi.org/10.1186/s13601-018-0197-8 Buters JTM, Thibaudon M, Smith M, Kennedy R, Rantio-Lehtimäki A (2012) Release of Bet v 1 from birch pollen from 5 European countries. Results from the HIALINE study. Atmos Environ 55:496–505. https://doi.org/10.1016/j.atmosenv.2012.01.054 Bykova O, Chuine I, Morin X (2019) Highlighting the importance of water availability in reproductive processes to understand climate change impacts on plant biodiversity. Perspect Plant Ecol Evol Syst 37:20–25. https://doi.org/10.1016/j.ppees.2019.01.003 Caccianiga M, Andreis C, Armiraglio S, Leonelli G, Pelfini M et al (2008) Climate continentality and treeline species distribution in the Alps. Plant Biosyst - Int J Deal Asp Plant Biol 142:66–78. https://doi.org/10.1080/11263500701872416 Campoy JA, Ruiz D, Egea J (2011) Dormancy in temperate fruit trees in a global warming context: a review. Sci Hortic 130:357–372. https://doi.org/10.1016/j.scienta.2011.07.011 Cleland E, Chuine I, Menzel A, Mooney H, Schwartz M (2007) Shifting plant phenology in response to global change. Trends Ecol Evol 22:357–365. https://doi.org/10.1016/j.tree.2007.04.003 Cohen JL, Furtado JC, Barlow M, Alexeev VA, Cherry JE et al (2012) Asymmetric seasonal temperature trends. Geophys Res Lett 39(4). https://doi.org/10.1029/2011GL050582 Core Team R (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaRetrieved from https://www.R-project.org/ Cornes RC, van der Schrier G, van den Besselaar EJM, Jones PD (2018) An ensemble version of the E-OBS temperature and precipitation data sets. J Geophys Res Atmospheres 123:9391–9409. https://doi.org/10.1029/2017JD028200 Damialis A, Traidl-Hoffmann C, Treudler R (2019) Climate change and pollen allergies. In: Marselle MR, Stadler J, Korn H et al (eds) Biodiversity and health in the face of climate change. Springer International Publishing, Cham, pp 47–66 Doblas-Miranda E, Alonso R, Arnan X, Bermejo V, Brotons L et al (2017) A review of the combination among global change factors in forests, shrublands and pastures of the Mediterranean Region: beyond drought effects. Glob Planet Change 148:42–54. https://doi.org/10.1016/j.gloplacha.2016.11.012 Doi H, Gordo O, Mori T, Kubo MT (2017) A macroecological perspective for phenological research under climate change. Ecol Res 32:633–641. https://doi.org/10.1007/s11284-017-1480-1 Durham SR, Nelson HS, Nolte H, Bernstein DI, Creticos PS et al (2014) Magnitude of efficacy measurements in grass allergy immunotherapy trials is highly dependent on pollen exposure. Allergy 69:617–623. https://doi.org/10.1111/all.12373 Falk W, Mellert KH (2011) Species distribution models as a tool for forest management planning under climate change: risk evaluation of Abies alba in Bavaria. J Veg Sci 22:621–634. https://doi.org/10.1111/j.1654-1103.2011.01294.x Fawcett AA, Iyer GC, Clarke LE, Edmonds JA, Hultman NE et al (2015) Can Paris pledges avert severe climate change? Science 350:1168–1169. https://doi.org/10.1126/science.aad5761 Galán C, Alcázar P, Oteros J, García-Mozo H, Aira MJ et al (2016) Airborne pollen trends in the Iberian Peninsula. Sci Total Environ 550:53–59. https://doi.org/10.1016/j.scitotenv.2016.01.069 Galán C, Ariatti A, Bonini M, Clot B, Crouzy B et al (2017) Recommended terminology for aerobiological studies. Aerobiología 33:293–295. https://doi.org/10.1007/s10453-017-9496-0 Galán C, Smith M, Thibaudon M, Frenguelli G, Oteros J et al (2014) Pollen monitoring: minimum requirements and reproducibility of analysis. Aerobiologia 30:385–395. https://doi.org/10.1007/s10453-014-9335-5 Garcia RA, Cabeza M, Rahbek C, Araujo MB (2014) Multiple dimensions of climate change and their implications for biodiversity. Science 344:1247579–1247579. https://doi.org/10.1126/science.1247579 García-Mozo H (2017) Poaceae pollen as the leading aeroallergen worldwide: a review. Allergy 72:1849–1858. https://doi.org/10.1111/all.13210 Ghitarrini S, Tedeschini E, Timorato V, Frenguelli G (2017) Climate change: consequences on the pollination of grasses in Perugia (Central Italy). A 33-year-long study. Int J Biometeorol 61:149–158. https://doi.org/10.1007/s00484-016-1198-8 Gordo O, Sanz JJ (2010) Impact of climate change on plant phenology in Mediterranean ecosystems. Glob Change Biol 16:1082–1106. https://doi.org/10.1111/j.1365-2486.2009.02084.x Guiot J, Cramer W (2016) Climate change: the 2015 Paris Agreement thresholds and Mediterranean basin ecosystems. Science 354:465–468. https://doi.org/10.1126/science.aah5015 Haftenberger M, Laußmann D, Ellert U, Kalcklösch M, Langen U et al (2013) Prevalence of sensitisation to aeroallergens and food allergens: results of the German Health Interview and Examination Survey for Adults (DEGS1). Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 56:687–697. https://doi.org/10.1007/s00103-012-1658-1 Hamaoui-Laguel L, Vautard R, Liu L, Solmon F, Viovy N et al (2015) Effects of climate change and seed dispersal on airborne ragweed pollen loads in Europe. Nat Clim Chang 5:766–771. https://doi.org/10.1038/nclimate2652 Hirst JM (1952) An automatic volumetric spore trap. Ann Appl Biol 39:257–265. https://doi.org/10.1111/j.1744-7348.1952.tb00904.x IPCC (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland Katelaris CH, Beggs PJ (2018) Climate change: allergens and allergic diseases. Intern Med J 48:129–134. https://doi.org/10.1111/imj.13699 Kim KR, Oh J-W, Woo S-Y, Seo YA, Choi Y-J et al (2018) Does the increase in ambient CO2 concentration elevate allergy risks posed by oak pollen? Int J Biometeorol 62:1587–1594. https://doi.org/10.1007/s00484-018-1558-7 Knutti R, Rogelj J, Sedláček J, Fischer EM (2016) A scientific critique of the two-degree climate change target. Nat Geosci 9:13–18. https://doi.org/10.1038/ngeo2595 Köppen W (1936) Das geographische System der Klimate. In: Handbuch der Klimatologie, Bd.1. Teil C. Borntraeger, Berlin, p 44 Kosanic A, Kavcic I, van Kleunen M, Harrison S (2019) Climate change and climate change velocity analysis across Germany. Sci Rep 9:2196. https://doi.org/10.1038/s41598-019-38720-6 Kottek M, Grieser J, Beck C, Rudolf B, Rubel F et al (2006) World Map of the Köppen-Geiger climate classification updated. Meteorol Z 15:259–263. https://doi.org/10.1127/0941-2948/2006/0130 Lake IR, Jones NR, Agnew M, Goodess CM, Giorgi F et al (2017) Climate change and future pollen allergy in Europe. Environ Health Perspect 125:385–391. https://doi.org/10.1289/EHP173 Lind T, Ekebom A, Alm Kübler K, Östensson P, Bellander T et al (2016) Pollen season trends (1973-2013) in Stockholm area, Sweden. PLoS One 11:e0166887. https://doi.org/10.1371/journal.pone.0166887 Luedeling E, Girvetz EH, Semenov MA, Brown PH (2011) Climate change affects winter chill for temperate fruit and nut trees. PLoS One 6:e20155. https://doi.org/10.1371/journal.pone.0020155 Luterbacher J (2004) European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303:1499–1503. https://doi.org/10.1126/science.1093877 Makra L, Matyasovszky I, Deák ÁJ (2011) Trends in the characteristics of allergenic pollen circulation in central Europe based on the example of Szeged, Hungary. Atmos Environ 45:6010–6018. https://doi.org/10.1016/j.atmosenv.2011.07.051 Matiu M, Ankerst DP, Menzel A (2016) Asymmetric trends in seasonal temperature variability in instrumental records from ten stations in Switzerland, Germany and the UK from 1864 to 2012. Int J Climatol 36:13–27. https://doi.org/10.1002/joc.4326 Menzel A, Sparks TH, Estrella N, Eckhardt S (2005) ‘SSW to NNE’–North Atlantic Oscillation affects the progress of seasons across Europe. Glob Change Biol 11:909–918. https://doi.org/10.1111/j.1365-2486.2005.00954.x Miranda JD, Armas C, Padilla FM, Pugnaire FI (2011) Climatic change and rainfall patterns: effects on semi-arid plant communities of the Iberian Southeast. J Arid Environ 75:1302–1309. https://doi.org/10.1016/j.jaridenv.2011.04.022 Morellato LPC, Alberton B, Alvarado ST, Borges B, Buisson E et al (2016) Linking plant phenology to conservation biology. Biol Conserv 195:60–72. https://doi.org/10.1016/j.biocon.2015.12.033 Oteros J, García-Mozo H, Vázquez L, Mestre A, Domínguez-Vilches E et al (2019a) Spatial interpolation of current airborne pollen concentrations where no monitoring exists. Atmos Environ 199:435–442. https://doi.org/10.1016/j.atmosenv.2018.11.045 Oteros J, García-Mozo H, Vázquez L et al (2013) Modelling olive phenological response to weather and topography. Agric Ecosyst Environ 179:62–68. https://doi.org/10.1016/j.agee.2013.07.008 Oteros J, Sofiev M, Smith M, Clot B, Damialis A et al (2019b) Building an automatic pollen monitoring network (ePIN): selection of optimal sites by clustering pollen stations. Sci Total Environ 688:1263–1274. https://doi.org/10.1016/j.scitotenv.2019.06.131 Pérez-Badia R, Rapp A, Morales C, Sardinero S, Galán C et al (2010) Pollen spectrum and risk of pollen allergy in central Spain. Ann Agric Environ Med 17:139–151 www.aaem.pl/Pollen-spectrum-and-risk-of-pollen-allergy-in-central-Spain-,71626,0,2.html Pfaar O, Bastl K, Berger U, Buters J, Calderon MA et al (2017) Defining pollen exposure times for clinical trials of allergen immunotherapy for pollen-induced rhinoconjunctivitis-an EAACI position paper. Allergy 72:713–722. https://doi.org/10.1111/all.13092 Piao S, Liu Q, Chen A, Janssens IA, Fu Y et al (2019) Plant phenology and global climate change: current progresses and challenges. Glob Change Biol 25:1922–1940. https://doi.org/10.1111/gcb.14619 Rodríguez A, Pérez-López D, Sánchez E, Centeno A, Gómara I et al (2019) Chilling accumulation in fruit trees in Spain under climate change. Nat Hazards Earth Syst Sci 19:1087–1103. https://doi.org/10.5194/nhess-19-1087-2019 Rojo J, Oteros J, Picornell A, Ruëff F, Werchan B et al (2020) Land-use and height of pollen sampling affect pollen exposure in Munich, Germany. Atmosphere 11:145. https://doi.org/10.3390/atmos11020145 Rojo J, Pérez-Badia R (2014) Effects of topography and crown-exposure on olive tree phenology. Trees 28:449–459. https://doi.org/10.1007/s00468-013-0962-1 Rojo J, Picornell A, Oteros J (2019) AeRobiology: the computational tool for biological data in the air. Methods Ecol Evol 10:1371–1376. https://doi.org/10.1111/2041-210X.13203 Rojo J, Rapp A, Lara B, Sabariego S, Fernández-González F et al (2016) Characterisation of the airborne pollen spectrum in Guadalajara (central Spain) and estimation of the potential allergy risk. Environ Monit Assess 188:130. https://doi.org/10.1007/s10661-016-5129-2 Rubel F, Brugger K, Haslinger K, Auer I (2017) The climate of the European Alps: shift of very high resolution Köppen-Geiger climate zones 1800–2100. Meteorol Z 26:115–125. https://doi.org/10.1127/metz/2016/0816 Schröder W, Schmidt G, Schönrock S (2014) Modelling and mapping of plant phenological stages as bio-meteorological indicators for climate change. Environ Sci Eur 26:5. https://doi.org/10.1186/2190-4715-26-5 Shea KM, Truckner RT, Weber RW, Peden DB (2008) Climate change and allergic disease. J Allergy Clin Immunol 122:443–453. https://doi.org/10.1016/j.jaci.2008.06.032 Sheffield J, Wood EF, Roderick ML (2012) Little change in global drought over the past 60 years. Nature 491:435–438. https://doi.org/10.1038/nature11575 Sheffield PE, Weinberger KR, Kinney PL (2011) Climate change, aeroallergens, and pediatric allergic disease. Mt Sinai J Med J Transl Pers Med 78:78–84. https://doi.org/10.1002/msj.20232 Smith M, Emberlin J, Stach A, Rantio-Lehtimäki A, Caulton E et al (2009) Influence of the North Atlantic Oscillation on grass pollen counts in Europe. Aerobiologia 25:321–332. https://doi.org/10.1007/s10453-009-9136-4 Smith M, Jäger S, Berger U, Šikoparija B, Hallsdottir M et al (2014) Geographic and temporal variations in pollen exposure across Europe. Allergy 69:913–923. https://doi.org/10.1111/all.12419 Smith M, Oteros J, Schmidt-Weber C, Buters JTM (2019) An abbreviated method for the quality control of pollen counters. Grana 58:185–190. https://doi.org/10.1080/00173134.2019.1570327 Ummenhofer CC, Meehl GA (2017) Extreme weather and climate events with ecological relevance: a review. Philos Trans R Soc B Biol Sci 372:20160135. https://doi.org/10.1098/rstb.2016.0135 Valdes-Abellan J, Pardo MA, Tenza-Abril AJ (2017) Observed precipitation trend changes in the western Mediterranean region. Int J Climatol 37:1285–1296. https://doi.org/10.1002/joc.4984 Vicente-Serrano SM, Lopez-Moreno J-I, Beguería S, Lorenzo-Lacruz J, Sanchez-Lorenzo A et al (2014) Evidence of increasing drought severity caused by temperature rise in southern Europe. Environ Res Lett 9:044001. https://doi.org/10.1088/1748-9326/9/4/044001 Vilček J, Škvarenina J, Vido J, Nalevanková P, Kandrík R et al (2016) Minimal change of thermal continentality in Slovakia within the period1961–2013. Earth Syst Dyn 7:735–744. https://doi.org/10.5194/esd-7-735-2016 Walther G-R, Post E, Convey P, Menzel A, Parmesan C et al (2002) Ecological responses to recent climate change. Nature 416:389–395. https://doi.org/10.1038/416389a Werchan M, Werchan B, Bergmann K-C (2018) German pollen calendar 4.0–update based on 2011–2016 pollen data. Allergo J Int 27:69–71. https://doi.org/10.1007/s40629-018-0055-1 Ziello C, Sparks TH, Estrella N, Belmonte J, Bergmann KC et al (2012) Changes to airborne pollen counts across Europe. PLoS One 7:e34076. https://doi.org/10.1371/journal.pone.0034076 Zimmermann J, Hauck M, Dulamsuren C, Leuschner C (2015) Climate warming-related growth decline affects Fagus sylvatica, but not other broad-leaved tree species in central European mixed forests. Ecosystems 18:560–572. https://doi.org/10.1007/s10021-015-9849-x Ziska LH, Epstein P, Schlesinger W (2009) Rising CO2, climate change, and public health: exploring the links to plant biology. Environ Health Perspect 117:155–158. https://doi.org/10.1289/ehp.11501 Ziska LH, Makra L, Harry SK, Bruffaerts N, Hendrickx M et al (2019) Temperature-related changes in airborne allergenic pollen abundance and seasonality across the northern hemisphere: a retrospective data analysis. Lancet Planet Health 3:e124–e131. https://doi.org/10.1016/S2542-5196(19)30015-4