Connectivity compensates for low habitat quality and small patch size in the butterfly Cupido minimus

Ecological Research - Tập 23 - Trang 259-269 - 2007
Birgit Binzenhöfer1,2, Robert Biedermann3, Josef Settele4, Boris Schröder5
1Bavarian Acadamy for Nature Conservation and Landscape Management, Laufen, Germany
2Department of Conservation Biology, UFZ – Centre for Environmental Research Leipzig-Halle, Leipzig, Germany
3Landscape Ecology Group, Institute of Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
4Department of Community Ecology, UFZ Centre for Environmental Research Leipzig-Halle, Halle/Saale, Germany
5Institute of Geoecology, University of Potsdam, Potsdam, Germany

Tóm tắt

Habitat size, habitat isolation and habitat quality are regarded as the main determinants of butterfly occurrence in fragmented landscapes. To analyze the relationship between the occurrence of the butterfly Cupido minimus and these factors, patch occupancy of the immature stages in patches of its host plant Anthyllis vulneraria was studied in the nature reserve Hohe Wann in Bavaria (Germany). In 2001 and 2002, 82 A. vulneraria patches were surveyed for the presence of C. minimus larvae. The occurrence was largely affected by the size of the food plant patches. In a habitat model that uses multiple logistic regression, the type of management and habitat connectivity are further determinants of species distribution. Internal and temporal validation demonstrate the stability and robustness of the developed habitat models. Additionally, it was proved that the colonization rate of C. minimus was significantly influenced by the distance to the next occupied Anthyllis patch. Concerning long-term survival of (meta-) populations in fragmented landscapes, the results show that lower habitat quality may be compensated by higher connectivity between host plant patches.

Tài liệu tham khảo

Appelt M, Poethke HJ (1997) Metapopulation dynamics in a regional population of the Blue-Winged Grasshopper (Oedipoda caerulescens). J Insect Conserv 1:205–214 Asher J, Warren M, Fox R, Harding P, Jeffcoate C, Jeffcoate S (2001) The millennium atlas of butterflies in Britain and Ireland. Oxford University Press, Oxford Austin MP (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol Model 157:101–118 Backhaus K, Erichson B, Plinke W, Weiber R (2000) Multivariate Analysemethoden - Eine anwendungsorientierte Einführung. Springer, Berlin Baguette M, Petit S, Queva F (2000) Population spatial structure and migration of three butterfly species within the same habitat network: consequence for conservation. J Appl Ecol 37:100–108 Beck JR, Shultz EK (1986) The use of ROC curves in test performance evaluation. Arch Pathol Lab Med 110:13–20 Biedermann R (2000) Metapopulation dynamics of the froghopper Neophilaenus albipennis (F., 1798) (Homoptera, Cercopidae)—what is the minimum viable metapopulation size? J Insect Conserv 4:99–107 Biedermann R (2003) Body size and area-incidence relationships: is there a general pattern? Global Ecol Biogeogr 12:381–387 Biedermann R (2004) Patch occupancy of two hemipterans sharing a common host plant. J Biogeogr 31:1179–1184 Binzenhöfer B, Schröder B, Biedermann R, Strauß B, Settele J (2005) Habitat models and habitat connectivity analysis for butterflies and burnet moths—the example of Zygaena carniolica and Coenonympha arcania. Biol Conserv 126:247–259 Blab J, Kudrna O (1982) Hilfsprogramm für Schmetterlinge. Kilda, Greven Bonn A, Schröder B (2001) Habitat model and their transfer for single and multi species groups: a case study of carabids in an alluvial forest. Ecography 24:483–496 Burnham KP, Anderson DR (2002) Model selection and multi-model inference. Springer, Heidelberg Dennis RLH, Eales HT (1997) Patch occupancy in Coenonympha tullia (Müller, 1764) (Lepidoptera: Satyrinae): habitat quality matters as much as patch size and isolation. J Insect Conserv 1:167–176 Dennis RLH, Eales HT (1999) Probability of site occupancy in the large heath butterfly Coenonympha tullia determined from geographical and ecological data. Biol Conserv 87:295–301 Deutscher Wetterdienst (2002) http://www.klimadiagramme.de/Deutschland/Bamberg2.html Ebert G, Rennwald E (1991) Die Schmetterlinge Baden-Württembergs - Band 2 Tagfalter II. Ulmer, Stuttgart Feldmann R, Reinhardt R, Settele J (2000) Bestimmung und Kurzcharakteristik der außeralpinen Tagfalter Deutschlands. In: Settele J, Feldmann R, Reinhardt R (eds) Die Tagfalter Deutschlands - Ein Handbuch für Freilandökologen, Umweltplaner und Naturschützer. Ulmer, Stuttgart, pp 247–369 Fielding AH, Haworth PF (1995) Testing the generality of bird-habitat models. Conserv Biol 9:1466–1481 Fielding AH, Bell J (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49 Fleishman E, Ray C, Sjögren-Gulve P, Boggs CL, Murphy DD (2002) Assessing the roles of patch quality, area and isolation in predicting metapopulation dynamics. Conserv Biol 16:706–716 Fleishman E, Mac Nally R, Fay JP (2003) Validation tests of predictive models of butterfly occurrence based on environmental variables. Conserv Biol 17:806–817 Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186 Gutierrez D, Leon-Cortes JL, Menendez R, Wilson RJ, Cowley MJR, Thomas CD (2001) Metapopulations of four lepidopteran herbivores on a single host plant, Lotus corniculatus. Ecology 82:1371–1386 Hanski I (1994a) Patch occupancy dynamics in fragmented landscapes. TREE 9:131–135 Hanski I (1994b) A practical model of metapopulation dynamics. J Anim Ecol 63:151–162 Hanski I (2001) Spatially realistic theory of metapopulation ecology. Naturwissenschaften 88:372–381 Hanski I, Gilpin ME (1991) Metapopulation dynamics: brief history and conceptual domain. Biol J Linn Soc 42:3–16 Hanski I, Thomas CD (1994) Metapopulation dynamics and conservation: a spatially explicit model applied to butterflies. Biol Conserv 68:167–180 Hanski I, Kuussaari M, Nieminen M (1994) Metapopulation structure and migration in the butterfly Melitaea cinxia. Ecology 75:747–762 Hanski I, Gilpin ME (1997) Metapopulation biology: ecology, genetics and evolution. Academic Press, Toronto Harrison S (1991) Local extinction in a metapopulation context: an empirical evaluation. Biol J Linn Soc 42:73–78 Heinrich W, Marstaller R, Bährmann R, Perner J, Schäller G (1998) Das Naturschutzgebiet “Leutratal” bei Jena - Struktur- und Sukzessionsforschung in Grasland-Ökosystemen. Naturschutzreport 14, Jena Hermann G (2000) Methoden der qualitativen Erfassung von Tagfalter. In: Settele J, Feldmann R, Reinhardt R (eds) Die Tagfalter Deutschlands - Ein Handbuch für Freilandökologen, Umweltplaner und Naturschützer. Ulmer, Stuttgart, pp 124–143 Hill JK, Thomas CD, Lewis OT (1996) Effects of habitat patch size and isolation on dispersal by Hesperia comma butterflies: implications for metapopulation structure. J Anim Ecol 63:151–162 Hirsch G, Mann M, Müller O (1998) Naturschutzgroßprojekt Orchideenregion Jena - Muschelkalkhänge im Mittleren Saaletal, Thüringen. Natur und Landschaft 73:334–349 Hosmer DW, Lemeshow S (2000) Applied logistic regression. Wiley, New York Hovestadt T (1990) Die Bedeutung zufälligen Aussterbens für die Naturschutzplanung. Natur und Landschaft 65:3–8 Kindvall O, Ahlen I (1992) Geometrical factors and metapopulation dynamics of the bush cricket, Metrioptera bicolor Philippi (Orthoptera, Tettigoniidae). Conserv Biol 6:520–529 Krauss J, Steffan-Dewenter I, Tscharntke T (2004) Landscape occupancy and local population size depends on host plant distribution in the butterfly Cupido minimus. Biol Conserv 120:359–365 Kudrna O (1986) Aspects of the conservation of butterflies in Europe. Aula, Wiesbaden Kuhn W, Kleyer M (1999) A statistical habitat model for the blue winged grasshopper (Oedipoda caerulescens) considering the habitat connectivity. J Nature Conserv 8:207–218 Kuussaari M, Nieminen M, Hanski I (1996) An experimental study of migration in the glanville fritillary Melitaea cinxia. J Anim Ecol 65:791–801 Leon-Cortes JL, Lennon JJ, Thomas CD (2003) Ecological dynamics of extinct species in empty habitat networks. 2. The role of host plant dynamics. Oikos 102:465–477 Londo G (1976) The decimal scala for releves of permanent quadrats. Vegetatio 33:1–61 Manel S, Dias JM, Ormerod SJ (1999) Comparing discriminant analysis, neural networks and logistic regression for predicted species distributions: a case study with a Himalayan river bird. Ecol Model 120:337–347 Moilanen A, Nieminen M (2002) Simple connectivity measures in spatial ecology. Ecology 83:1131–1145 Morrison ML, Marcot BG, Mannan RW (1998) Wild-life habitat relationship—concepts and applications. University of Wisconsin Press, Madison Nagelkerke NJD (1991) A note on general definition of the coefficient of determination. Biometrika 78: 691–692 Oberdorfer E (2001) Pflanzensoziologische Exkursionsflora für Deutschland und angrenzende Gebiete. Ulmer, Stuttgart Pearce J, Ferrier S (2000a) Evaluating the predictive performance of habitat models developed using logistic regression. Ecol Model 133:224–245 Pearce J, Ferrier S (2000b) An evaluation of alternative algorithms for fitting species distribution models using logistic regression. Ecol Model 128:127–147 Peppler-Lisbach C, Schröder B (2004) Predicting the species composition of mat-grass communities (Nardetalia) by logistic regression modelling. J Veg Sci 15:623–634 Poethke HJ, Gottschalk E, Seitz A (1996) Gefährdungsanalyse einer räumlich strukturierten Population der Westlichen Beißschrecke (Patycleis albopunctata): Ein Beispiel für den Einsatz des Metapopulationskonzeptes im Artenschutz. J Nature Conserv 5:229–242 Pretscher P (1998) Rote Liste der Großschmetterlinge (Macrolepidoptera). In: Binot M, Bless R, Boye P, Gruttke H, Pretscher P (eds) Rote Liste gefährdeter Tiere Deutschlands. Schriftenreihe für Landschaftspflege und Naturschutz 55:87–111 Reich M, Grimm V (1996) Das Metapopulationskonzept in Ökologie und Naturschutz: Eine kritische Bestandsaufnahme. J Nature Conserv 5:123–139 Reineking B, Schröder B (2003) Computer-intensive methods in the analysis of species-habitat relationships. In: Reuter H, Breckling B, Mittwollen A (eds) Gene, Bits und Ökosysteme. GfÖ Arbeitskreis Theorie in der Ökologie 2003, pp 165–182 Reineking B, Schröder B (2006) Constrain to perform: regularization of habitat models. Ecol Model 193:675–690 Roslin T, Koivunen A (2001) Distribution and abundance of dung beetles in fragmented landscapes. Oecologia 127:69–77 Schröder B, Richter O (1999) Are habitat models transferable in space and time? J Nature Conserv 8:195–207 Schröder B (2000) Zwischen Naturschutz und theoretischer Ökologie: Modelle zur Habitateignung und räumlicher Populationsdynamik für Heuschrecken im Niedermoor. Landschaftsökologie und Umweltforschung 35. PhD thesis, TU Braunschweig Sterk A, von Duykeren A, Hogervorts J, Verbeek EDM (1982) Demographic studies of Anthyllis vulneraria L. in the Netherlands. II. Population density fluctuations, seed populations, seedling mortality and influence of the biocenosis on demographic features. Acta Botanica Neerlandica 24:315–337 Steyerberg EW, Harrell FEJ, Borsboom GJJM, Eijkemans MJC, Vergouwe Y, Habbema JDF (2001) Internal validation of predictive models—efficiency of some procedures for logistic regression analysis. J Clinical Epidemiol 54:774–781 Thomas CD, Harrison S (1992) Spatial dynamics of a patchily distributed butterfly species. J Anim Ecol 61:437–446 Thomas CD, Thomas JA, Warren MS (1992) Distribution of occupied and vacant butterfly habitats in fragmented landscapes. Oecologia 92:563–567 Thomas CD, Hanski I (1997) Butterfly metapopulations. In: Hanski I, Gilpin ME (eds) Metapopulation biology: ecology, genetics and evolution. Academic Press, San Diego, pp 359–386 Thomas JA, Clarke RT, Elmes GW, Hochberg ME (1998) Population dynamics in the genus Maculinea. In: Dempster JP, McLean IFG (eds) Insect population dynamics: in theory and practise. Chapman & Hall, London, pp 261–290 Thomas JA, Bourn NAD, Clarke RT, Stewart KE, Simcox DJ, Pearman GS, Curtis R, Goodger B (2001) The quality and isolation of habitat patches both determine where butterflies persist in fragmented landscapes. Proc Royal Soc Lond B 268:1791–1796 Trexler JC, Travis J (1993) Nontraditional regression analyses. Ecology 74:1629–1637 Verbyla DL, Litvaitis JA (1989) Resampling methods for evaluating classification accuracy of wildlife habitat models. Environ Manage 13:783–787 Wahlberg N, Moilanen A, Hanski I (1996) Predicting the occurrence of endangered species in fragmented landscapes. Science 273:1536–1538 Wahlberg N, Klemetti T, Hanski I (2002) Dynamic populations in a dynamic landscape: the metapopulation structure of the marsh fritillary butterfly. Ecography 25:224–232 Weidemann HJ (1995) Tagfalter: beobachten, bestimmen. Naturbuch, Augsburg Whittingham MJ, Stephens PA, Bradbury BR, Freckleton RP (2006) Why do we still use stepwise modelling in ecology and behaviour? J Anim Ecol 75:1182–1189 Wilcox BA (1980) Insular ecology and conservation. In: Soule ME, Wilcox BA (eds) Conservation biology: an evolutionary-ecological perspective. Sinauer Associates Inc., Sunderland, pp 95–117