Connectivity-Based Brain Parcellation

Springer Science and Business Media LLC - Tập 14 - Trang 83-97 - 2015
Qi Wang1, Rong Chen2, Joseph JaJa1, Yu Jin1, L. Elliot Hong3, Edward H. Herskovits2
1Department of Electrical and Computer Engineering, University of Maryland, College Park, USA
2Department of Radiology, University of Maryland, Baltimore, USA
3Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland, Baltimore, USA

Tóm tắt

Defining brain structures of interest is an important preliminary step in brain-connectivity analysis. Researchers interested in connectivity patterns among brain structures typically employ manually delineated volumes of interest, or regions in a readily available atlas, to limit the scope of connectivity analysis to relevant regions. However, most structural brain atlases, and manually delineated volumes of interest, do not take voxel-wise connectivity patterns into consideration, and therefore may not be ideal for anatomic connectivity analysis. We herein propose a method to parcellate the brain into regions of interest based on connectivity. We formulate connectivity-based parcellation as a graph-cut problem, which we solve approximately using a novel multi-class Hopfield network algorithm. We demonstrate the application of this approach using diffusion tensor imaging data from an ongoing study of schizophrenia. Compared to a standard anatomic atlas, the connectivity-based atlas supports better classification performance when distinguishing schizophrenic from normal subjects. Comparing connectivity patterns averaged across the normal and schizophrenic subjects, we note significant systematic differences between the two atlases.

Tài liệu tham khảo

Aarts, E., & Korst, J. (1988). Simulated annealing and boltzmann machines: a stochastic approach to combinatorial optimization and neural computing. Amunts, K., Kedo, O., Kindler, M., Pieperhoff, P., Mohlberg, H., Shah, N., Habel, U., Schneider, F., & Zilles, K. (2005). Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps. Anatomy and Embryology, 210(5–6), 343–352. Beckmann, C.F., DeLuca, M., Devlin, J.T., & Smith, S.M. (2005). Investigations into resting-state connectivity using independent component analysis. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1457), 1001–1013. Behrens, T., Berg, H.J., Jbabdi, S., Rushworth, M., & Woolrich, M. (2007). Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? Neuroimage, 34(1), 144–155. Belmonte, M.K., Allen, G., Beckel-Mitchener, A., Boulanger, L.M., Carper, R.A., & Webb, S.J. (2004). Autism and abnormal development of brain connectivity. The Journal of Neuroscience, 24(42), 9228–9231. Buchanan, C.R., Pernet, C.R., Gorgolewski, K.J., Storkey, A.J., & Bastin, M.E. (2014). Test–retest reliability of structural brain networks from diffusion mri. Neuroimage, 86, 231–243. Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186–198. Bullmore, E., & Sporns, O. (2012). The economy of brain network organization. Nature Reviews Neuroscience, 13(5), 336–349. Cloutman, L.L., & Ralph, M.A.L. (2012). Connectivity-based structural and functional parcellation of the human cortex using diffusion imaging and tractography. Frontiers in Neuroanatomy, 6. Collins, D.L., Holmes, C.J., Peters, T.M., & Evans, A.C. (1995). Automatic 3-d model-based neuroanatomical segmentation. Human Brain Mapping, 3(3), 190–208. Hagmann, P., Kurant, M., Gigandet, X., Thiran, P., Wedeen, V.J., Meuli, R., & Thiran, J.P. (2007). Mapping human whole-brain structural networks with diffusion mri. PloS One, 2(7), e597. Hayasaka, S., & Laurienti, P.J. (2010). Comparison of characteristics between region-and voxel-based network analyses in resting-state fmri data. Neuroimage, 50(2), 499– 508. Hellinger, E. (1909). Neue begründung der theorie quadratischer formen von unendlichvielen veränderlichen. Journal für die reine und angewandte Mathematik, 136, 210–271. van den Heuvel, M.P., Mandl, R.C., Kahn, R.S., Pol, H., & Hilleke, E. (2009). Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Human Brain Mapping, 30(10), 3127–3141. Honea, R., Crow, T.J., Passingham, D., & Mackay, C.E. (2005). Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. American Journal of Psychiatry, 162(12), 2233–2245. Hopfield, J.J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, 79(8), 2554– 2558. Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., & Smith, S.M. (2012). Fsl Neuroimage, 62(2), 782–790. Karp, R.M. (1972). Reducibility among combinatorial problems. Springer. Kötter, R., Hilgetag, C.C., & Stephan, K.E. (2001). Connectional characteristics of areas in walker’s map of primate prefrontal cortex. Neurocomputing, 38, 741–746. Levine, E., & Domany, E. (2001). Resampling method for unsupervised estimation of cluster validity. Neural Computation, 13(11), 2573–2593. Mori, S., Wakana, S., Van Zijl, P.C., & Nagae-Poetscher, L. (2005). Mri atlas of human white matter. Nanetti, L., Cerliani, L., Gazzola, V., Renken, R., & Keysers, C. (2009). Group analyses of connectivity-based cortical parcellation using repeated < i > k-means clustering. Neuroimage, 47(4), 1666–1677. Passingham, R.E., Stephan, K.E., & Kötter, R. (2002). The anatomical basis of functional localization in the cortex. Nature Reviews Neuroscience, 3(8), 606–616. Roca, P., Rivière, D., Guevara, P., Poupon, C., & Mangin, J.F. (2009). Tractography-based parcellation of the cortex using a spatially-informed dimension reduction of the connectivity matrix. In Medical image computing and computer-assisted intervention–MICCAI 2009 (pp. 935–942). Springer. Roca, P., Tucholka, A., Rivière, D., Guevara, P., Poupon, C., & Mangin, J.F. (2010). Inter-subject connectivity-based parcellation of a patch of cerebral cortex. In Medical image computing and computer-assisted intervention–MICCAI 2010 (pp. 347–354). Springer. Supekar, K., Menon, V., Rubin, D., Musen, M., & Greicius, M.D. (2008). Network analysis of intrinsic functional brain connectivity in alzheimer’s disease. PLoS Computational Biology, 4(6), e1000,100. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., & Joliot, M. (2002). Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject brain. Neuroimage, 15(1), 273–289. Varshney, L.R., Chen, B.L., Paniagua, E., Hall, D.H., & Chklovskii, D.B. (2011). Structural properties of the caenorhabditis elegans neuronal network. PLoS Computational Biology, 7(2), e1001,066. Von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Computing, 17(4), 395–416. Zalesky, A., Fornito, A., Harding, I.H., Cocchi, L., Yücel, M., Pantelis, C., & Bullmore, E.T. (2010). Whole-brain anatomical networks: does the choice of nodes matter? Neuroimage, 50(3), 970–983. Zang, Y., Jiang, T., Lu, Y., He, Y., & Tian, L. (2004). Regional homogeneity approach to fmri data analysis. Neuroimage, 22(1), 394–400.