Condensin Regulates the Stiffness of Vertebrate Centromeres

Molecular Biology of the Cell - Tập 20 Số 9 - Trang 2371-2380 - 2009
Susana A. Ribeiro1, Jesse C. Gatlin2, Yimin Dong3, Ajit P. Joglekar2, Lisa Cameron2, Damien F. Hudson1,4, Christine J. Farr5, Bruce F. McEwen3, Edward D. Salmon2, William C. Earnshaw1, Paola Vagnarelli1
1*Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom;
2Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599;
3Wadsworth Center, New York State Department of Health, Albany, NY 12201
4Chromosome and Chromatin Research, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne 3052, Australia; and
5Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, United Kingdom

Tóm tắt

When chromosomes are aligned and bioriented at metaphase, the elastic stretch of centromeric chromatin opposes pulling forces exerted on sister kinetochores by the mitotic spindle. Here we show that condensin ATPase activity is an important regulator of centromere stiffness and function. Condensin depletion decreases the stiffness of centromeric chromatin by 50% when pulling forces are applied to kinetochores. However, condensin is dispensable for the normal level of compaction (rest length) of centromeres, which probably depends on other factors that control higher-order chromatin folding. Kinetochores also do not require condensin for their structure or motility. Loss of stiffness caused by condensin-depletion produces abnormal uncoordinated sister kinetochore movements, leads to an increase in Mad2(+) kinetochores near the metaphase plate and delays anaphase onset.

Từ khóa


Tài liệu tham khảo

Almagro S., 2004, J. Biol. Chem, 279, 5118, 10.1074/jbc.M307221200

Bouck D. C., 2007, Curr. Biol, 17, 741, 10.1016/j.cub.2007.03.033

Cheeseman I. M., 2008, Nat. Rev. Mol. Cell Biol, 9, 33, 10.1038/nrm2310

Cimini D., 2006, Curr. Biol, 16, 1711, 10.1016/j.cub.2006.07.022

Coelho P. A., 2003, J. Cell Sci, 116, 4763, 10.1242/jcs.00799

10.1091/mbc.e04-09-0852

Ding R., 1993, J. Cell Biol, 120, 141, 10.1083/jcb.120.1.141

Earnshaw W. C., 1983, J. Cell Biol, 96, 84, 10.1083/jcb.96.1.84

Ekwall K., 2007, Annu. Rev. Genet, 41, 63, 10.1146/annurev.genet.41.110306.130127

Foltz D. R., 2006, Nat. Cell Biol, 8, 458, 10.1038/ncb1397

Fuller B. G., 2008, Nature, 453, 1132, 10.1038/nature06923

10.1091/mbc.e05-04-0275

Gassmann R., 2004, Exp. Cell Res, 296, 35, 10.1016/j.yexcr.2004.03.006

Gerlich D., 2006, Curr. Biol, 16, 333, 10.1016/j.cub.2005.12.040

Goshima G., 2000, Cell, 100, 619, 10.1016/S0092-8674(00)80699-6

Hagstrom K. A., 2002, Genes Dev, 16, 729, 10.1101/gad.968302

He X., 2000, Cell, 101, 763, 10.1016/S0092-8674(00)80888-0

Hirano T., 2006, Nat. Rev. Mol. Cell Biol, 7, 311, 10.1038/nrm1909

Hirota T., 2004, J. Cell Sci, 117, 6435, 10.1242/jcs.01604

Houchmandzadeh B., 1997, J. Cell Biol, 139, 1, 10.1083/jcb.139.1.1

10.1091/mbc.e08-01-0057

Hudson D. F., 2003, Dev. Cell, 5, 323, 10.1016/S1534-5807(03)00199-0

10.1091/mbc.6.12.1619

Jäger H., 2005, Chromosoma, 113, 350, 10.1007/s00412-004-0322-4

Joglekar A. P., 2006, Nat. Cell Biol, 8, 581, 10.1038/ncb1414

Kaitna S., 2002, Curr. Biol, 12, 798, 10.1016/S0960-9822(02)00820-5

King J. M., 2000, J. Cell Sci, 113, 3815, 10.1242/jcs.113.21.3815

Loncarek J., 2007, Nature, 450, 745, 10.1038/nature06344

Maresca T. J., 2009, J. Cell Biol, 184, 373, 10.1083/jcb.200808130

Marko J. F., 2008, Chromosome Res, 16, 469, 10.1007/s10577-008-1233-7

Marshall O. J., 2008, J. Cell Biol, 183, 1193, 10.1083/jcb.200804078

McEwen B. F., 2009, J. Cell Biol, 184, 355, 10.1083/jcb.200812016

McIntosh J. R., 2002, Annu. Rev. Cell Dev. Biol, 18, 193, 10.1146/annurev.cellbio.18.032002.132412

Musacchio A., 2007, Nat. Rev. Mol. Cell Biol, 8, 379, 10.1038/nrm2163

Nasmyth K., 2005, Annu. Rev. Biochem, 74, 595, 10.1146/annurev.biochem.74.082803.133219

Nicklas R. B., 1969, Spindle fiber tension and the reorientation of mal-oriented chromosomes. J. Cell Biol, 43, 40

Nicklas R. B., 2001, J. Cell Sci, 114, 4173, 10.1242/jcs.114.23.4173

Oliveira R. A., 2005, Mol. Cell. Biol, 25, 8971, 10.1128/MCB.25.20.8971-8984.2005

10.1091/mbc.e04-03-0242

Pearson C. G., 2001, J. Cell Biol, 152, 1255, 10.1083/jcb.152.6.1255

Pidoux A. L., 2005, Philos. Trans. R. Soc. Lond. B Biol. Sci, 360, 569, 10.1098/rstb.2004.1611

Rieder C. L., 1994, J. Cell Biol, 124, 223, 10.1083/jcb.124.3.223

Ruchaud S., 2002, EMBO J, 21, 1967, 10.1093/emboj/21.8.1967

Saitoh N., 1994, J. Cell Biol, 127, 303, 10.1083/jcb.127.2.303

Skibbens R. V., 1995, J. Cell Sci, 108, 2537, 10.1242/jcs.108.7.2537

Skibbens R. V., 1993, J. Cell Biol, 122, 859, 10.1083/jcb.122.4.859

Spence J. M., 2007, J. Cell Sci, 120, 3952, 10.1242/jcs.013730

Uchida K. S., 2009, J. Cell Biol, 184, 383, 10.1083/jcb.200811028

Vagnarelli P., 2006, Nat. Cell Biol, 8, 1133, 10.1038/ncb1475

Vagnarelli P., 2008, FEBS Lett, 582, 1950, 10.1016/j.febslet.2008.04.014

Warburton P. E., 1997, Curr. Biol, 7, 901, 10.1016/S0960-9822(06)00382-4

10.1091/mbc.7.10.1547

Wignall S. M., 2003, J. Cell Biol, 161, 1041, 10.1083/jcb.200303185

Yeh E., 2008, Curr. Biol, 18, 81, 10.1016/j.cub.2007.12.019

Yong-Gonzalez V., 2007, Genes Cells, 12, 1075, 10.1111/j.1365-2443.2007.01109.x