Computing the pull-in voltage of fixed–fixed micro-actuators by artificial neural network
Tóm tắt
In this study, a feed-forward backpropagation (FFBP) artificial neural network (ANN) model based on multilayer perceptron (MLP) for computing the pull-in voltage value of fixed–fixed micro-actuators is presented. The proposed ANN model is trained using the numerous pull-in voltage value results of clamped–clamped actuators, which have various physical properties, simulated by a software that employs the finite element method (FEM). As the presented ANN model has been trained for the simulation data, it implicitly takes into account the fringing field, mid-plane stretching and size effects. The accuracy and robustness of the results obtained by the proposed ANN model are verified by comparing with those of the theoretical ones through the simulation and experimental studies previously presented in the literature. The average percentage errors for training and testing data are found to be 0.30 and 0.40 %, respectively, while the maximum percentage error for literature data is calculated as 1.96 %. These results show that the main advantage of the presented ANN model gives satisfying pull-in voltage results over solution space of the simulations with effortless way.
Tài liệu tham khảo
Ak C (2008) Position control of electrostatic actuators. Master’s thesis, Mersin University, Mersin, Turkey
Ak C, Yildiz A (2014) An inversely designed model for calculating pull-in limit and position of electrostatic fixed–fixed beam actuator. Math Probl Eng. doi:10.1155/2014/391942
Ak C, Yildiz A (2016) A new analytical model to estimate the voltage value and position of the pull-in limit of a MEMS cantilever. Micromachines 7(4):53. doi:10.3390/mi7040053
Ak C, Yildiz A, Akdagli A (2016) A novel expression obtained by using artificial bee colony algorithm to calculate pull-in voltage of fixed–fixed micro-actuators. Electr Eng (accepted)
Alsaleem FM, Younis MI, Ruzziconi L (2010) An experimental and theoretical investigation of dynamic pull-in in MEMS resonators actuated electrostatically. J Microelectromech Syst 19:794–806. doi:10.1109/JMEMS.2010.2047846
Au AK, Lai H, Utela BR, Folch A (2011) Microvalves and micropumps for BioMEMS. Micromachines 2:179–220. doi:10.3390/mi2020179
Batra RC, Porfiri M, Spinello D (2007) Review of modeling electrostatically actuated microelectromechanical systems. Smart Mater 16:R23–R31. doi:10.1088/0964-1726/16/6/R01
Bochobza-Degani O, Nemirovsky Y (2004) Experimental verification of a design methodology for torsion actuators based on a rapid pull-in solver. J Microelectromech Syst 13:121–130. doi:10.1109/JMEMS.2004.824220
Chowdhury S, Ahmadi M, Miller WC (2006) Pull-in voltage study of electrostatically actuated fixed–fixed beams using a VLSI on-chip interconnect capacitance model. J Microelectromech Syst 15:639–651. doi:10.1109/JMEMS.2005.863784
Chuang WC, Lee HL, Chang PZ, Hu YC (2010) Review on the modeling of electrostatic MEMS. Sensors 10:6149–6171. doi:10.3390/s100606149
COMSOL Multiphysics® Modeling Software (2016). https://www.comsol.com/. Accessed 12.04.16
Dean RN Jr, Luque A (2009) Applications of microelectromechanical systems in industrial processes and services. IEEE Trans Ind Electron 56:913–925. doi:10.1109/TIE.2009.2013691
Elata D, Bochobza-Degani O, Nemirovsky Y (2003) Analytical approach and numerical alpha-line method for pull-in hyper-surface extraction of electrostatic actuators with multiple uncoupled voltage sources. J Microelectromech Syst 12(5):681–691. doi:10.1109/JMEMS.2003.818456
Eom K, Park HS, Yoon DS, Kwon T (2011) Nanomechanical resonators and their applications in biological/chemical detection. Nanomechanics principles. Phys Rep 503:115–163. doi:10.1016/j.physrep.2011.03.002
Hagan MT, Menhaj M (1994) Training feedforward networks with the marquardt algorithm. IEEE Trans Neural Netw 5:989–993
Haluzan DT, Klymyshyn DM, Achenbach S, Börner M (2010) Reducing pull-in voltage by adjusting gap shape in electrostatically actuated cantilever and fixed–fixed beams. Micromachines 1:68–81. doi:10.3390/mi1020068
Hannot SDA, Rixen DJ (2013) A palette of methods for computing pull-in curves for numerical models of microsystems. Finite Elem Anal Des 67:76–90. doi:10.1016/j.finel.2013.01.001
Hu YC, Lin DT, Lee GD (2006) A closed form solution for the pull-in voltage of the micro bridge with initial stress subjected to electrostatic loads. In: IEEE international conference on nano/micro engineered and molecular systems January (Zhuhai, China), 2006, 18–21
Joglekar M, Pawaskar D (2011) Closed-form empirical relations to predict the dynamic pull-in parameters of electrostatically actuated tapered microcantilevers. J Micromech Microeng 21:105014. doi:10.1088/0960-1317/21/10/105014
Kayabasi A, Bicer MB, Akdagli A, Toktas A (2011) Computing resonant frequency of H-shaped compact microstrip antennas operating at UHF band by using artificial neural networks. J Fac Eng Arch Gazi Univ 26:833–840
Kayabasi A, Toktas A, Akdagli A, Bicer MB, Ustun D (2014) Applications of ANN and ANFIS to predict the resonant frequency of L-shaped compact microstrip antennas. Appl Comput Electromagn Soc J 29:460–469
Kuang JH, Chen CJ (2004) Dynamic characteristics of shaped micro-actuators solved using the differential quadrature method. J Micromech Microeng 14:647–655. doi:10.1088/0960-1317/14/4/028
Lee KB (2007) Closed-form expressions for pull-in parameters of two-degree-of-freedom torsional microactuators. J Micromech Microeng 17:1853–1862. doi:10.1088/0960-1317/17/9/014
Lee KB, Lin L, Cho YH (2008) A closed-form approach for frequency tunable comb resonators with curved finger contour. Sens Actuators A Phys 141:523–529. doi:10.1016/j.sna.2007.10.004
Liu D, Friend KC, Yeo JL (2010) A brief review of actuation at the micro-scale using electrostatics, electromagnetics and piezoelectric ultrasonics. Sci Tech 31:115–123. doi:10.1250/ast.31.115
Loh OY, Espinosa HD (2012) Nanoelectromechanical contact switches. Nat Nanotechnol 7:283–295. doi:10.1038/nnano.2012.40
Mojahedi M, Zand MM, Ahmadian MT (2010) Static pull-in analysis of electrostatically actuated microbems using homotopy perturbation method. Appl Math Model 34:1032–1041. doi:10.1016/j.apm.2009.07.013
Nathanson HC, Newell WE, Wickstrom RA, Jr Davis JR (1967) The resonant gate transistor. IEEE Transaction of Electron Devices ED-14. 117–133. doi:10.1109/T-ED.1967.15912
Nisar A, Afzulpurkar N, Mahaisavariya B, Tuantranont A (2008) MEMS-based micropumps in drug delivery and biomedical applications. Sens Actuators B 130:917–942. doi:10.1016/j.snb.2007.10.064
O’Mahony C, Hill M, Mathewson A (2003) Analysis of electromechanical boundary effects on the pull-in of micromachined fixed–fixed beams. J Micromech Microeng 13:75–80. doi:10.1088/0960-1317/13/4/312
Osterberg PM, Senturia SD (1997) M-TEST: a test chip for MEMS material property measurement using electrostatically actuated test structures. J Microelectromech Syst 6:107–118. doi:10.1109/84.585788
Pamidighantam S, Puers R, Baert K, Tilmans HAC (2002) Pull-in voltage analysis of electrostatically actuated beam structures with fixed–fixed and fixed-free end conditions. J Micromech Microeng 12:458–464. doi:10.1088/0960-1317/12/4/319
Poelma RH, Sadeghian H, Noijen SPM, Zaal JJM, Zhang GQ (2011) A numerical experimental approach for characterizing the elastic properties of thin films: application of nanocantilevers. J Micromech Microeng 21(6):065003. doi:10.1088/0960-1317/21/6/065003
Pryputniewicz RJ (2007) Progress in microelectromechanical systems. Strain 43:13–25. doi:10.1111/j.1475-1305.2007.00303.x
Rocha LA, Cretu E, Wolffenbuttel RF (2004) Analysis and analytical modeling of static pull-in with application to mems-based voltage reference and process monitoring. J Microelectromech Syst 13:342–354. doi:10.1109/JMEMS.2004.824892
Rokni H, Seethaler RJ, Milani AS, Hosseini-Hashemi S, Li X-F (2013) Analytical closed-form solutions for size-dependent static pull-in behavior in electrostatic micro-actuators via Fredholm integral equation. Sens Actuators A 190:32–43. doi:10.1016/j.sna.2012.10.035
Rong H, Huang QA, Nie M, Li W (2004) An analytical model for pull-in voltage of clamped-clamped multilayer beams. Sens Actuators A 116:15–21. doi:10.1016/j.sna.2004.03.027
Rottenberg X, Wolf ID, Nauwelaers BKJC, Raedt WD, Tilmans HAC (2007) Analytical model of the DC actuation of electrostatic MEMS devices with distributed dielectric charging and nonplanar electrodes. J Microelectromech Syst 16:1243–1253. doi:10.1109/JMEMS.2007.899334
Roy AL, Bhattacharya A, Chaudhuri RR, Bhattacharyya TK (2012) Analysis of the pull-in phenomenon in microelectromechanical varactors. In: 25th conference on VLSI design (Hyderabad), 2012, 185–90. doi:10.1109/VLSID.2012.68
Sadeghian H, Rezazadeh G, Osterberg PM (2007) Application of the generalized differential quadrature method to the study of pull-in phenomena of MEMs switches. J Microelectromech Syst 16:1334–1340. doi:10.1109/JMEMS.2007.909237
Siddique JI, Deaton R, Sabo E, Pelesko JA (2011) An experimental investigation of the theory of electrostatic deflections. J Electrost 69:1–6. doi:10.1016/j.elstat.2010.10.007
Tang WC, Nguyen TCH, Howe RT (1989) Laterally driven polysilicon resonant microstructures. Sens Actuators 20:25–32. doi:10.1016/0250-6874(89)87098-2
Tilmans HAC, Legtenberg R (2007) Electrostatically driven vacuum encapsulated polysilicon resonators: part II. Theory and performance. Sens Actuators A 45:67–84. doi:10.1016/0924-4247(94)00813-2
Van Spengen WM, Puers R, Mertens R, Wolf ID (2002) Experimental characterization of stiction due to charging in RF MEMS. In: Proc. IEEE Int. Electron. Devices Meeting Dig. (San Francisco, CA), 2002, 901–904. doi: 10.1109/IEDM.2002.1175982
Zhang WM, Meng G (2007) Nonlinear dynamic analysis of electrostatically actuated resonant MEMS sensors under parametric excitation. IEEE Sens J 7:370–380. doi:10.1109/JSEN.2006.890158
Zhang Y, Zhao YP (2006) Numerical and analytical study on the pull-in instability of micro-structure under electrostatic loading. Sens Actuators A 127:366–380. doi:10.1016/j.sna.2005.12.045
Zhang W, Baskaran R, Turner KL (2002) Effect of cubic nonlinearity on auto-parametrically amplified resonant MEMS mass sensor. Sens Actuators A 102:139–150. doi:10.1016/S0924-4247(02)00299-6