Computing motivic zeta functions on log smooth models
Tóm tắt
We give an explicit formula for the motivic zeta function in terms of a log smooth model. It generalizes the classical formulas for snc-models, but it gives rise to much fewer candidate poles, in general. This formula plays an essential role in recent work on motivic zeta functions of degenerating Calabi–Yau varieties by the second-named author and his collaborators. As a further illustration, we explain how the formula for Newton non-degenerate polynomials can be viewed as a special case of our results.
Tài liệu tham khảo
Berkovich, V.G.: Vanishing cycles for formal schemes II. Invent. Math. 125(2), 367–390 (1996)
Bories, B., Veys, W.: Igusa’s \(p\)-adic local zeta function and the monodromy conjecture for non-degenerate surface singularities. Mem. Amer. Math. Soc. 242 (2016)
Bosch, S., Lütkebohmert, W., Raynaud, M.: Néron models. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 21. Springer, Berlin (1990)
Brown, M., Mazzon, E.: The essential skeleton of a product of degenerations. Preprint. arXiv:1712.07235
Bultot, E.: Motivic Integration and Logarithmic Geometry. Ph.D. Thesis, KU Leuven (2015). arXiv:1505.05688
Bultot, E.: Computing zeta functions on log smooth models. C. R. Math. Acad. Sci. Paris 353(3), 261–264 (2015)
Denef, J., Hoornaert, K.: Newton polyhedra and Igusa’s local zeta function. J. Number Theory 89(1), 31–64 (2001)
Denef, J., Loeser, F.: Geometry on arc spaces of algebraic varieties. In: European Congress of Mathematics, vol. I (Barcelona, 2000). Vol. 201, Progr. Math., Birkhäuser, Basel, pp. 327–348 (2001)
Fulton, W.: Introduction to toric varieties. In: Annals of Mathematics Studies, vol. 131. Princeton University Press, Princeton (1993)
Gabber, O., Ramero, L.: Foundations for almost ring theory—release 6.9. Preprint (2015). arXiv:math/0409584v10
Guibert, G.: Espaces d’arcs et invariants d’Alexander. Comment. Math. Helv. 77(4), 783–820 (2002)
Halle, L.H., Nicaise, J.: Motivic zeta functions of abelian varieties, and the monodromy conjecture. Adv. Math. 227, 610–653 (2011)
Halle, L.H., Nicaise, J.: Motivic zeta functions of degenerating Calabi–Yau varieties. Math. Ann. 370(3–4), 1277–1320 (2018)
Hartmann, A.: Equivariant motivic integration on formal schemes and the motivic zeta function. Comm. Algebra 47(4), 1423–1463 (2019)
Ito, H., Schröer, S.: Wild quotient surface singularities whose dual graphs are not star-shaped. Asian J. Math. 19(5), 951–986 (2015)
Kato, K.: Logarithmic structures of Fontaine-Illusie. In: Algebraic Analysis, Geometry, and Number Theory. Johns Hopkins University Press, Baltimore, pp. 191–224 (1989)
Kato, K.: Toric singularities. Am. J. Math. 116(5), 1073–1099 (1994)
Kempf, G., Knudsen, F., Mumford, D., Saint-Donat, B.: Toroidal embeddings 1. In: Lecture Notes in Mathematics, vol. 339. Springer (1973)
Kouchnirenko, A.G.: Polyèdres de Newton et nombres de Milnor. Invent. Math. 32, 1–32 (1976)
Lemahieu, A., Van Proeyen, L.: Monodromy conjecture for nondegenerate surface singularities. Trans. Am. Math. Soc. 363(9), 4801–4829 (2011)
Loeser, F.: Fonctions d’Igusa \(p\)-adiques et polynômes de Bernstein. Am. J. Math. 110(1), 1–21 (1988)
Loeser, F.: Fonctions d’Igusa \(p\)-adiques, polynômes de Bernstein, et polyèdres de Newton. J. Reine Angew. Math. 412, 75–96 (1990)
Loeser, F., Sebag, J.: Motivic integration on smooth rigid varieties and invariants of degenerations. Duke Math. J. 119, 315–344 (2003)
Nakayama, C.: Logarithmic étale cohomology. Math. Ann. 308, 365–404 (1997)
Nicaise, J.: A trace formula for rigid varieties, and motivic Weil generating series for formal schemes. Math. Ann. 343(2), 285–349 (2009)
Nicaise, J.: Geometric criteria for tame ramification. Math. Z. 273(3), 839–868 (2013)
Nicaise, J., Overholser, D.P., Ruddat, H.: Motivic zeta functions of the quartic and its mirror dual. In: String-Math 2014, volume 93 of Proceedings of Symposia in Pure Mathematics, AMS, pp. 187–198 (2016)
Nicaise, J., Sebag, J.: The motivic Serre invariant, ramification, and the analytic Milnor fiber. Invent. Math. 168(1), 133–173 (2007)
Nicaise, J., Sebag, J.: The Grothendieck ring of varieties. In: R. Cluckers, J. Nicaise and J. Sebag (eds.) Motivic Integration and its Interactions with Model Theory and Non-archimedean Geometry. Volume 383 of London Mathematical Society Lecture Notes Series. Cambridge University Press, pp. 145–188 (2011)
Niziol, W.: Toric singularities: log-blow-ups and global resolutions. J. Algebraic Geom. 15(1), 1–29 (2006)
Rodrigues, B.: On the monodromy conjecture for curves on normal surfaces. Math. Proc. Camb. Philos. Soc. 136(2), 313–324 (2004)
Rodrigues, B., Veys, W.: Poles of zeta functions on normal surfaces. Proc. Lond. Math. Soc. (3) 87(1), 164–196 (2003)
Saito, T.: Log smooth extension of a family of curves and semi-stable reduction. J. Algebraic Geom. 13(2), 287–321 (2004)
Strauss, L.: Poles of a two variable p-adic complex power. Trans. Am. Math. Soc. 278(2), 481–493 (1983)
Veys, W.: Zeta functions for curves and log canonical models. Proc. Lond. Math. Soc. 74(2), 360–378 (1997)
Wang, J.: Equivariant resolution of singularities and semi-stable reduction in characteristic zero. Ph.D. Thesis, Massachusetts Institute of Technology (1997)