Tư Duy Tính Toán Trong Giáo Dục Toán Trung Học Với GeoGebra: Những Phát Hiện Từ Một Can Thiệp Trong Các Bài Học Giải Tích

Christos Chytas1, S.P. van Borkulo1, Paul Drijvers1, Erik Barendsen2, Jos Tolboom3
1Utrecht University, Utrecht, The Netherlands
2Radboud University Nijmegen, the Netherlands
3SLO, Netherlands Institute for Curriculum Development, Amersfoort, The Netherlands

Tóm tắt

Tóm tắt

Hiện nay, các giáo viên toán K–12 đang nỗ lực thúc đẩy kiến thức toán học và kỹ năng tư duy tính toán (CT) của học sinh. Nhu cầu về tài liệu học toán tích hợp CT hiệu quả ngày càng tăng và sự hiểu biết tốt hơn về quan điểm của học sinh đối với những tài liệu này là cần thiết. Trong công trình nghiên cứu này, chúng tôi trình bày kết quả của một nghiên cứu, bao gồm thiết kế hoạt động học gồm sáu bài học nhằm phát triển kỹ năng CT của học sinh trung học từ 16 đến 17 tuổi trong các giờ học giải tích sử dụng phần mềm toán động GeoGebra. Mục tiêu của chúng tôi là điều tra cách học sinh trải nghiệm các bài học giải tích tích hợp CT với GeoGebra và những thách thức mà họ gặp phải khi tương tác với tài liệu học và phần mềm. Chúng tôi thu thập và phân tích dữ liệu từ mã của học sinh trong GeoGebra, sổ bài tập, phỏng vấn bán cấu trúc, và bảng câu hỏi. Kết quả nghiên cứu cho thấy hầu hết học sinh đã nắm vững việc sử dụng các khái niệm CT trong hoạt động giải tích một cách hài lòng và có khả năng suy luận về các giải pháp tính toán của họ bằng cách sử dụng GeoGebra và các đồ thị sinh ra. Sự hiểu biết của học sinh về kiến thức nội dung toán học được giới thiệu là yếu tố cần thiết để hoàn thành chuỗi bài học thành công và các khoảng trống kiến thức trước đó đã nổi lên mà không được chú ý. Nghiên cứu của chúng tôi cho thấy học sinh đánh giá cao các bài học giải tích tích hợp CT và cách tiếp cận khám phá của GeoGebra đối với các vấn đề toán học khi được cung cấp sự hỗ trợ thích hợp. Chúng tôi kết luận rằng một phương pháp tích hợp giữa giáo dục toán học và CT là khả thi và có thể góp phần không chỉ phát triển CT mà còn tăng sự quan tâm đến toán học.

Từ khóa

#Tư duy tính toán; Giáo dục toán trung học; GeoGebra; Giải tích; Hoạt động học; Phân tích dữ liệu; Đánh giá học sinh.

Tài liệu tham khảo

Adelabu, F., Makgato, M., & Ramaligela, M. (2019). Enhancing learners’ geometric thinking using dynamic geometry computer software. Journal of Technical Education and Training, 11(1), 44–53.

Arbain, N., & Shukor, N. (2015). The effects of GeoGebra on student achievement. Procedia: Social and Behavioral Sciences, 172, 208–214.

Atmatzidou, S., & Demetriadis, S. (2016). Advancing students’ computational thinking skills through educational robotics A study on age and gender relevant differences. Robotics and Autonomous Systems, 75, 661–670.

Bell, T., & Lodi, M. (2019). Constructing computational thinking without using computers. Constructivist Foundations, 14(3), 342–351.

Brahier, D., Leinwand, S., & Huinker, D. (2014). Principles to actions: Mathematics programs as the core for student learning. Mathematics Teacher, 107(9), 656–658.

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. In Proceedings of the 2012 Annual Meeting of theAmerican Educational Research Association (pp. 1–25). Vancouver, Canada.

Caeli, E., & Yadav, A. (2020). Unplugged approaches to computational thinking A historical perspective. TechTrends: Linking Research and Practice to Improve Learning, 64(1), 29–36.

Calao, L., Moreno-León, J., Correa, H., & Robles, G. (2015). Developing mathematical thinking with Scratch: An experiment with 6th grade students. In G. Conole, T. Klobučar, C. Rensing, J. Konert, & E. Lavoué (Eds.), Design for teaching and learning in a networked world: 10th European conference on technology enhanced learning (pp. 17–27). Springer.

Carter, N., Bryant-Lukosius, D., DiCenso, A., Blythe, J., & Neville, A. (2014). The use of triangulation in qualitative research. Oncology Nursing Forum, 41(5), 545–547.

Chytas, C., Diethelm, I., & Tsilingiris, A. (2018). Learning programming through design: An analysis of parametric design projects in digital fabrication labs and an online makerspace. 2018 IEEE Global Engineering Education Conference (EDUCON) (pp. 1978–1987). IEEE.

Dagienė, V., & Sentance, S. (2016). It’s computational thinking! Bebras tasks in the curriculum. In A. Brodnik & F. Tort (Eds.), Informatics in schools – Improvements on informatics knowledge and perception: 9th international conference on informatics in schools – Situation, evolution and perspectives (pp. 28–39). Springer.

Dong, Y., Cateté, V., Jocius, R., Lytle, N., Barnes, T., Albert, J., Joshi, D., Robinson, R., & Andrews, A. (2019). PRADA: A practical model for integrating computational thinking in K–12 education. In Proceedings of the 50th ACM Technical Symposium on Computer Science Education (pp. 906–912).

Drijvers, P. (2018). Empirical evidence for benefit? Reviewing quantitative research on the use of digital tools in mathematics education. In L. Ball, P. Drijvers, S. Ladel, H.-S., Siller, M. Tabach & C. Vale, (Eds.), Uses of technology in primary and secondary mathematics education (pp. 161–175). Springer.

Futschek, G. (2006). Algorithmic thinking: The key for understanding computer science. In R. Mittermeir (Ed.), Informatics education – The bridge between using and understanding computers: International conference on informatics in secondary schools – Evolution and perspectives (pp. 159–168). Springer.

Geraniou, E., & Jankvist, U. (2019). Towards a definition of “mathematical digital competency.” Educational Studies in Mathematics, 102(1), 29–45.

Gravemeijer, K., & Cobb, P. (2006). Design research from a learning design perspective. In J. van den Akker, K. Gravemeijer, S. McKenney, & N. Nieveen (Eds.), Educational design research (pp. 29–63). Routledge.

Guzdial, M. (2008). Education: Paving the way for computational thinking. Communications of the ACM, 51(8), 25–27.

Henderson, P., Cortina, T., & Wing, J. (2007). Computational thinking. SIGCSE. Bulletin, 39(1), 195–196.

Janssen, B. (2021). Incorporating computational thinking in calculus lessons: A characterisation of algorithmic thinking and generalisation skills [Unpublished bachelor’s thesis]. Radboud University.

Jenkins, J. T., Jerkins, J. A., & Stenger, C. (2012). A plan for immediate immersion of computational thinking into the high school math classroom through a partnership with the Alabama math, science, and technology initiative. In Proceedings of the Annual Southeast Conference(pp. 148–152).

Kallia, M., van Borkulo, S., Drijvers, P., Barendsen, E., & Tolboom, J. (2021). Characterising computational thinking in mathematics education: A literature-informed Delphi study. Research in Mathematics Education, 23(2), 159–187.

Kynigos, C., & Grizioti, M. (2018). Programming approaches to computational thinking: Integrating turtle geometry, dynamic manipulation and 3D space. Informatics in Education, 17(2), 321–340.

Lee, I., Martin, F., & Apone, K. (2014). Integrating computational thinking across the K–8 curriculum. ACM Inroads, 5(4), 64–71.

Lv, L., Zhong, B., & Liu, X. (2023). A literature review on the empirical studies of the integration of mathematics and computational thinking. Education and Information Technologies, 28(7), 8171–8193.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books.

Perković, L., Settle, A., Hwang, S., & Jones, J. (2010). A framework for computational thinking across the curriculum. In Proceedings of the 2010 Conference on innovation and technology in computer science education(pp. 123–127).

Rich, K., Spaepen, E., Strickland, C., & Moran, C. (2020). Synergies and differences in mathematical and computational thinking: Implications for integrated instruction. Interactive Learning Environments, 28(3), 272–283.

Rich, P., Egan, G., & Ellsworth, J. (2019). A framework for decomposition in computational thinking. In Proceedings of the 2019 ACM conference on innovation and technology in computer science education (ITiCSE ‘19) (pp. 416–421). Association for Computing Machinery.

Sanford, J., & Naidu, J. (2016). Computational thinking concepts for grade school. Contemporary Issues in Education Research, 9(1), 23–32.

Selby, C., & Woollard, J. (2013). Computational thinking: The developing definition. In Proceedings of the 45th ACM technical symposium on computer science education, SIGCSE 2014. ACM.

van Borkulo, S., Chytas, C., Drijvers, P., Barendsen, E., & Tolboom, J. (2021). Computational Thinking in the Mathematics Classroom: Fostering Algorithmic Thinking and Generalization Skills Using Dynamic Mathematics Software. In Proceedings of the 16th Workshop in Primary and Secondary Computing Education (WiPSCE '21), Article 19(pp. 1–9). Association for Computing Machinery.

van Borkulo, S., Chytas, C., Drijvers, P., Barendsen, E., & Tolboom, J. (2023). Spreadsheets in secondary school statistics education: Using authentic data for computational thinking. Digital Experiences in Mathematics Education, 9(3), 420–443.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining computational thinking for mathematics and science classrooms. Journal of Science Education and Technology, 25(1), 127–147.

Wilensky, U., Brady, C., & Horn, M. (2014). Fostering computational literacy in science classrooms. Communications of the ACM, 57(8), 24–28.

Wing, J. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.

Wing, J. (2011). Research notebook: Computational thinking – What and why? The Link Magazine, 6, 20–23.

Wing, J. (2017). Computational thinking’s influence on research and education for all. Italian Journal of Educational Technology, 25(2), 7–14.

Yadav, A., Connolly, C., Berges, M., Chytas, C., Franklin, C., Hijón-Neira, R., Macann, V., Margulieux, L., Ottenbreit-Leftwich, A., & Warner, J. R. (2022). A review of international models of computer science teacher education. In Proceedings of the 2022 working group reports on innovation and technology in computer science education(pp. 65–93).

Yazan, B. (2015). Three approaches to case study methods in education: Yin, Merriam, and Stake. The Qualitative Report, 20(2), 134–152.