Computational Radiomics System to Decode the Radiographic Phenotype
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aerts, 2016, The potential of radiomic-based phenotyping in precision medicine: a review, JAMA Oncol, 2, 1636, 10.1001/jamaoncol.2016.2631
Aerts, 2014, Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach, Nat Commun, 5, 4006, 10.1038/ncomms5006
Lambin, 2012, Radiomics: extracting more information from medical images using advanced feature analysis, Eur J Cancer, 48, 441, 10.1016/j.ejca.2011.11.036
Marusyk, 2012, Intra-tumour heterogeneity: a looking glass for cancer?, Nat Rev Cancer, 12, 323, 10.1038/nrc3261
Yip, 2016, Applications and limitations of radiomics, Phys Med Biol, 61, R150, 10.1088/0031-9155/61/13/R150
Orlhac, 2014, Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis, J Nucl Med, 55, 414, 10.2967/jnumed.113.129858
Tixier, 2012, Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET, J Nucl Med, 53, 693, 10.2967/jnumed.111.099127
Fedorov, 2012, 3D slicer as an image computing platform for the quantitative imaging network, Magn Reson Imaging, 30, 1323, 10.1016/j.mri.2012.05.001
Johnson, 2016, The ITK Software Guide Book 2: Design and Functionality Fourth Edition Updated for ITK version 4. 10
Haralick, 1973, Textural features for image classification [Internet], IEEE Trans Syst Man Cybern, SMC-3, 610, 10.1109/TSMC.1973.4309314
Galloway, 1975, Texture analysis using gray level run lengths, Comput Gr Image Process, 4, 172, 10.1016/S0146-664X(75)80008-6
Chu, 1990, Use of gray value distribution of run lengths for texture analysis, Pattern Recognit Lett, 11, 415, 10.1016/0167-8655(90)90112-F
Thibault, 2009, Texture indexes and gray level size zone matrix application to cell nuclei classification, Pattern Recognition and Information Processing (PRIP), 140