Compressing probabilistic Prolog programs

Luc De Raedt1, Kristian Kersting2, Angelika Kimmig1, Kate Revoredo2, Hannu Toivonen3
1Departement Computerwetenschappen, K.U. Leuven, Celestijnenlaan 200A, bus 2402, 3001, Heverlee, Belgium
2Institut für Informatik, Albert-Ludwigs-Universität, Georges-Köhler-Allee, Gebäude 079, 79110, Freiburg im Breisgau, Germany
3Department of Computer Science, University of Helsinki, P.O. Box 68, 00014, Helsinki, Finland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bryant, R. E. (1986). Graph-based algorithms for boolean function manipulation. IEEE Transactions on Computers, 35(8), 677–691.

Chavira, M., & Darwiche, A. (2007). Compiling Bayesian networks using variable elimination. In M. Veloso (Ed.), Proceedings of the 20th international joint conference on artificial intelligence (pp. 2443–2449). Menlo Park: AAAI Press.

De Raedt, L., & Kersting, K. (2003). Probabilistic logic learning. SIGKDD Explorations, 5(1), 31–48.

De Raedt, L., Kimmig, A., & Toivonen, H. (2007). ProbLog: a probabilistic Prolog and its application in link discovery. In M. Veloso (Ed.), Proceedings of the 20th international joint conference on artificial intelligence (pp. 2468–2473). Menlo Park: AAAI Press.

Flach, P. A. (1994). Simply logical: intelligent reasoning by example. New York: Wiley.

Fuhr, N. (2000). Probabilistic datalog: implementing logical information retrieval for advanced applications. Journal of the American Society for Information Science, 51, 95–110.

Getoor, L., & Taskar, B. (Eds.). (2007). Statistical relational learning. Cambridge: MIT Press.

Koppel, M., Feldman, R., & Segre, A. M. (1994). Bias-driven revision of logical domain theories. Journal of Artificial Intelligence Research, 1, 159–208.

Minato, S., Satoh, K., & Sato, T. (2007). Compiling Bayesian networks by symbolic probability calculation based on zero-suppressed BDDs. In M. Veloso (Ed.), Proceedings of the 20th international joint conference on artificial intelligence (pp. 2550–2555). Menlo Park: AAAI Press.

Muggleton, S. H. (1996). Stochastic logic programs. In L. De Raedt (Ed.), Advances in inductive logic programming. Amsterdam: IOS Press.

Perez-Iratxeta, C., Bork, P., & Andrade, M. A. (2002). Association of genes to genetically inherited diseases using data mining. Nature Genetics, 31, 316–319.

Poole, D. (1992). Logic programming, abduction and probability. In Fifth generation computing systems (pp. 530–538).

Poole, D. (1993). Probabilistic Horn abduction and Bayesian networks. Artificial Intelligence, 64, 81–129.

Sato, T., & Kameya, Y. (2001). Parameter learning of logic programs for symbolic-statistical modeling. Journal of AI Research, 15, 391–454.

Sevon, P., Eronen, L., Hintsanen, P., Kulovesi, K., & Toivonen, H. (2006). Link discovery in graphs derived from biological databases. In U. Leser, F. Naumann, & B. Eckman (Eds.), Lecture notes in bioinformatics : Vol. 4075. Data integration in the life sciences 2006. Berlin: Springer.

Valiant, L. G. (1979). The complexity of enumeration and reliability problems. SIAM Journal of Computing, 8, 410–411.

Wrobel, S. (1996). First Order Theory Refinement. In L. De Raedt (Ed.), Advances in inductive logic programming. Amsterdam: IOS Press.

Zelle, J. M., & Mooney, R. J. (1994). Inducing deterministic Prolog parsers from treebanks: a machine learning approach. In Proceedings of the 12th national conference on artificial intelligence (AAAI-94) (pp. 748–753).