Phân tích tổng thể tạm thời về chức năng tâm thất phải và hemodynamics phổi ở bệnh nhân COVID-19 ARDS được thở máy

Annals of Intensive Care - Tập 14 - Trang 1-13 - 2024
Vasiliki Tsolaki1, George E. Zakynthinos2, Nikitas Karavidas1, Vasileios Vazgiourakis1, John Papanikolaou3, Kyriaki Parisi1, Paris Zygoulis1, Demosthenes Makris1, Epaminondas Zakynthinos1
1Critical Care Department, Faculty of Medicine, University Hospital of Larissa, University of Thessaly, Larissa, Greece
2Third Cardiology Clinic, University of Athens, Sotiria Hospital, Athens, Greece
3Department of Cardiology, General Hospital of Trikala, Trikala, Greece

Tóm tắt

Tổn thương tim thường được báo cáo ở bệnh nhân COVID-19, trong đó tâm thất phải (RV) thường bị ảnh hưởng nhất. Chúng tôi đã đánh giá hệ thống chức năng tim và sự thay đổi theo chiều dọc ở bệnh nhân COVID-19 nặng mắc hội chứng suy hô hấp cấp (ARDS) nhập viện tại đơn vị chăm sóc tích cực (ICU) và đánh giá tác động đến sống sót. Chúng tôi đã thực hiện phân tích siêu âm tim toàn diện trong thời gian thực với các bệnh nhân ARDS COVID-19 thở máy, sử dụng siêu âm hai chiều và ba chiều. Chúng tôi xác định rối loạn chức năng tâm thất trái (LV) khi phân suất tống máu (EF) < 40% hoặc biến dạng theo chiều dọc (LS) > -18% và rối loạn chức năng RV nếu có hai chỉ số trong số phân suất thay đổi diện tích (FAC) < 35%, độ biến thiên bề mặt đỉnh van ba lá (TAPSE) < 1.6 cm, RV EF < 44%, RV–LS > -20%. Tải sau RV được đánh giá từ áp lực động mạch phổi tâm thu (PASP), PASP/Velocity Time Integral trong ống thoát tâm thất phải (VTIRVOT) và thời gian gia tốc phổi (PAcT). TAPSE/PASP đánh giá sự kết hợp giữa tâm thất phải và động mạch (VACR). Trong số 176 bệnh nhân được đưa vào nghiên cứu, rối loạn chức năng RV là phổ biến (69%) (RV–EF 41.1 ± 1.3%; RV–FAC 36.6 ± 0.9%, TAPSE 20.4 ± 0.4mm, RV–LS: -14.4 ± 0.4%), thường đi kèm với giãn RV (RVEDA/LVEDA 0.82 ± 0.02). Tải sau RV tăng lên ở hầu hết các bệnh nhân (PASP 33 ± 1.1 mmHg, PAcT 65.3 ± 1.5 ms, PASP/VTIRVOT, 2.29 ± 0.1 mmHg/cm). VACR là 0.8 ± 0.06 mm/mmHg. LV–EF < 40% có mặt trong 21/176 (11.9%); LV–EF trung bình 57.8 ± 1.1%. LV–LS (-13.3 ± 0.3%) cho thấy rối loạn LV không rõ ràng ở 87.5%. Tràn dịch màng tim nhẹ có mặt ở 70 (38%) bệnh nhân, thường xuyên hơn ở những người không sống sót (p < 0.05). Những bệnh nhân sống sót có sự cải thiện đáng kể trong sinh lý hô hấp vào ngày thứ 10 ICU (PaO2/FiO2, 231.2 ± 11.9 so với 120.2 ± 6.7 mmHg; PaCO2, 43.1 ± 1.2 so với 53.9 ± 1.5 mmHg; độ tuân thủ hệ hô hấp - CRS, 42.6 ± 2.2 so với 27.8 ± 0.9 ml/cmH2O, tất cả đều p < 0.0001). Hơn nữa, những bệnh nhân sống sót có sự giảm đáng kể tải sau RV (PASP: 36.1 ± 2.4 đến 20.1 ± 3 mmHg, p < 0.0001, PASP/VTIRVOT: 2.5 ± 1.4 đến 1.1 ± 0.7, p < 0.0001 PAcT: 61 ± 2.5 đến 84.7 ± 2.4 ms, p < 0.0001), liên quan đến sự cải thiện chức năng tống máu RV (RVEF: 36.5 ± 2.9% đến 46.6 ± 2.1%, p = 0.001 và RV–LS: -13.6 ± 0.7% đến -16.7 ± 0.8%, p = 0.001). Bên cạnh đó, giãn RV đã giảm ở những bệnh nhân sống sót (RVEDA/LVEDA: 0.8 ± 0.05 đến 0.6 ± 0.03, p = 0.001). CRS vào ngày thứ 10 có tương quan với tải sau RV (PASP/VTIRVOT, r: 0.535, p < 0.0001) và chức năng tống máu (RV–LS, 0.345, p = 0.001). LV–LS trong ngày thứ 10 ICU, trong khi ΔRV–LS và ΔPASP/RVOTVTI có liên quan đến sống sót. Sự cải thiện chức năng RV ở bệnh nhân COVID-19, tải sau RV và sự kết hợp RV–PA vào ngày thứ 10 có liên quan đến chức năng hô hấp và sự sống sót.

Từ khóa

#COVID-19 #tâm thất phải #tổn thương tim #hồi sức hô hấp #chức năng tim

Tài liệu tham khảo

Coromilas EJ, Kochav S, Goldenthal I, et al. Worldwide survey of COVID-19-associated arrhythmias. Circ Arrhythm Electrophysiol. 2021;14(3): e009458. https://doi.org/10.1161/CIRCEP.120.009458. Wang Y, Shu H, Liu H, et al. The peak levels of highly sensitive troponin I predicts in-hospital mortality in COVID-19 patients with cardiac injury: a retrospective study. Eur Heart J Acute Cardiovasc Care. 2021;10(1):6–15. https://doi.org/10.1093/ehjacc/zuaa019. Task Force for The Management of COVID-19 of The European Society of Cardiology. European Society of Cardiology guidance for the diagnosis and management of cardiovascular disease during the COVID-19 pandemic: part 1-epidemiology, pathophysiology, and diagnosis. Eur Heart J. 2021. https://doi.org/10.1093/eurheartj/ehab696. Dweck MR, Bularga A, Hahn RT, et al. Global evaluation of echocardiography in patients with COVID-19. Eur Heart J Cardiovasc Imaging. 2020;21(9):949–58. https://doi.org/10.1093/ehjci/jeaa178. Taieb P, Szekely Y, Lupu L, et al. Risk prediction in patients with COVID-19 based on haemodynamic assessment of left and right ventricular function. Eur Heart J Cardiovasc Imaging. 2021;22(11):1241–54. https://doi.org/10.1093/ehjci/jeab169. Gawałko M, Kapłon-Cieślicka A, Hohl M, et al. COVID-19 associated atrial fibrillation: incidence, putative mechanisms and potential clinical implications. Int J Cardiol Heart Vasc. 2020;30:100631. https://doi.org/10.1016/j.ijcha.2020.100631. Cheng MP, Cau A, Lee TC, Angiotensin Receptor Blocker Coronavirus Study (ARBs) CORONA I, et al. Acute cardiac injury in coronavirus disease 2019 and other viral infections—a systematic review and meta-analysis. Crit Care Med. 2021;49(9):1558–66. https://doi.org/10.1097/CCM.0000000000005026. Helms J, Combes A, Aissaoui N. Cardiac injury in COVID-19. Intensive Care Med. 2022;2022(48):111–3. https://doi.org/10.1007/s00134-021-06555-3. Huang S, Vignon P, Mekontso-Dessap A, ECHO-COVID Research Group, et al. Echocardiography findings in COVID-19 patients admitted to intensive care units: a multi-national observational study (the ECHO-COVID study). Intensive Care Med. 2022;48(6):667–78. https://doi.org/10.1007/s00134-022-06685-2. D’Alto M, Marra AM, Severino S, et al. Right ventricular-arterial uncoupling independently predicts survival in COVID-19 ARDS. Crit Care. 2020;24(1):670. https://doi.org/10.1186/s13054-020-03385-5. Bagate F, Masi P, d’Humières T, et al. Advanced echocardiographic phenotyping of critically ill patients with coronavirus-19 sepsis: a prospective cohort study. J Intensive Care. 2021;9(1):12. https://doi.org/10.1186/s40560-020-00516-6. Huang S, Vieillard-Baron A, Evrard B, Prat G, Chew MS, Balik M, Clau-Terré F, De Backer D, Mekontso Dessap A, Orde S, Morelli A, Sanfilippo F, Charron C, Vignon P, ECHO-COVID Study Group. Echocardiography phenotypes of right ventricular involvement in COVID-19 ARDS patients and ICU mortality: post-hoc (exploratory) analysis of repeated data from the ECHO-COVID study. Intensive Care Med. 2023;49(8):946–56. https://doi.org/10.1007/s00134-023-07147-z. Evrard B, Goudelin M, Giraudeau B, François B, Vignon P. Right ventricular failure is strongly associated with mortality in patients with moderate-to-severe COVID-19-related ARDS and appears related to respiratory worsening. Intensive Care Med. 2022;48(6):765–7. https://doi.org/10.1007/s00134-022-06730-0. Karagiannidis C, Mostert C, Hentschker C, Voshaar T, Malzahn J, Schillinger G, Klauber J, Janssens U, Marx G, Weber-Carstens S, Kluge S, Pfeifer M, Grabenhenrich L, Welte T, Busse R. Case characteristics, resource use, and outcomes of 10 021 patients with COVID-19 admitted to 920 German hospitals: an observational study. Lancet Respir Med. 2020;8(9):853–62. https://doi.org/10.1016/S2213-2600(20)30316-7. Ferrando C, Suarez-Sipmann F, Mellado-Artigas R, Hernández M, Gea A, Arruti E, Aldecoa C, Martínez-Pallí G, Martínez-González MA, Slutsky AS, Villar J. COVID-19 Spanish ICU Network. Clinical features, ventilatory management, and outcome of ARDS caused by COVID-19 are similar to other causes of ARDS. Intensive Care Med. 2020;46(12):2200–2211. https://doi.org/10.1007/s00134-020-06192-2. Erratum in: Intensive Care Med. 2020 Dec 2; PMID: 32728965; PMCID: PMC7387884. Botta M, Tsonas AM, Pillay J, Boers LS, Algera AG, Bos LDJ, Dongelmans DA, Hollmann MW, Horn J, Vlaar APJ, Schultz MJ, Neto AS, Paulus F, PRoVENT-COVID Collaborative Group. Ventilation management and clinical outcomes in invasively ventilated patients with COVID-19 (PRoVENT-COVID): a national, multicentre, observational cohort study. Lancet Respir Med. 2021;9(2):139–48. https://doi.org/10.1016/S2213-2600(20)30459-8. Estenssoro E, Loudet CI, Ríos FG, Kanoore Edul VS, Plotnikow G, Andrian M, Romero I, Piezny D, Bezzi M, Mandich V, Groer C, Torres S, Orlandi C, Rubatto Birri PN, Valenti MF, Cunto E, Sáenz MG, Tiribelli N, Aphalo V, Reina R, Dubin A, SATI-COVID-19 Study Group. Clinical characteristics and outcomes of invasively ventilated patients with COVID-19 in Argentina (SATICOVID): a prospective, multicentre cohort study. Lancet Respir Med. 2021;9(9):989–98. https://doi.org/10.1016/S2213-2600(21)00229-0. Beesley SJ, Weber G, Sarge T, Nikravan S, Grissom CK, Lanspa MJ, Shahul S, Brown SM. Septic cardiomyopathy. Crit Care Med. 2018;46(4):625–34. https://doi.org/10.1097/CCM.0000000000002851. Lanspa MJ, Cirulis MM, Wiley BM, et al. Right ventricular dysfunction in early sepsis and septic shock. Chest. 2021;159(3):1055–63. https://doi.org/10.1016/j.chest.2020.09.274. Sanfilippo F, Huang S, Herpain A, et al. The PRICES statement: an ESICM expert consensus on methodology for conducting and reporting critical care echocardiography research studies. Intensive Care Med. 2021;47(1):1–13. https://doi.org/10.1007/s00134-020-06262-5. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16(3):233–70. https://doi.org/10.1093/ehjci/jev014. Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23(7):685–713. https://doi.org/10.1016/j.echo.2010.05.010. Sugimoto T, Dulgheru R, Bernard A, et al. Echocardiographic reference ranges for normal left ventricular 2D strain: results from the EACVI NORRE study. Eur Heart J Cardiovasc Imaging. 2017;18(8):833–40. https://doi.org/10.1093/ehjci/jex140. Barbier C, Loubières Y, Schmit C, et al. Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Med. 2004;30(9):1740–6. https://doi.org/10.1007/s00134-004-2259-8. Takahama H, McCully RB, Frantz RP, et al. Unraveling the RV ejection Doppler envelope: insight into pulmonary artery hemodynamics and disease severity. JACC Cardiovasc Imaging. 2017;10(10PtB):1268–77. https://doi.org/10.1016/j.jcmg.2016.12.021. Abbas AE, Fortuin FD, Schiller NB, et al. A simple method for noninvasive estimation of pulmonary vascular resistance. J Am Coll Cardiol. 2003;41(6):1021–7. https://doi.org/10.1016/s0735-1097(02)02973-x. Roule V, Labombarda F, Pellissier A, et al. Echocardiographic assessment of pulmonary vascular resistance in pulmonary arterial hypertension. Cardiovasc Ultrasound. 2010;8:21. https://doi.org/10.1186/1476-7120-8-21. Opotowsky AR, Clair M, Afilalo J, et al. A simple echocardiographic method to estimate pulmonary vascular resistance. Am J Cardiol. 2013;112(6):873–82. https://doi.org/10.1016/j.amjcard.2013.05.016. Tello K, Wan J, Dalmer A, et al. Validation of the tricuspid annular plane systolic excursion/systolic pulmonary artery pressure ratio for the assessment of right ventricular-arterial coupling in severe pulmonary hypertension. Circ Cardiovasc Imaging. 2019;12(9): e009047. https://doi.org/10.1161/CIRCIMAGING.119.009047. Bleakley C, Singh S, Garfield B, et al. Right ventricular dysfunction in critically ill COVID-19 ARDS. Int J Cardiol. 2021;327:251–8. https://doi.org/10.1016/j.ijcard.2020.11.043. Janus SE, Hajjari J, Karnib M, et al. Prognostic value of left ventricular global longitudinal strain in COVID-19. Am J Cardiol. 2020;131:134–6. https://doi.org/10.1016/j.amjcard.2020.06.053. Lassen MCH, Skaarup KG, Lind JN, et al. Echocardiographic abnormalities and predictors of mortality in hospitalized COVID-19 patients: the ECHOVID-19 study. ESC Heart Fail. 2020;7(6):4189–97. https://doi.org/10.1002/ehf2.13044. Bursi F, Santangelo G, Sansalone D, et al. Prognostic utility of quantitative offline 2D-echocardiography in hospitalized patients with COVID-19 disease. Echocardiography. 2020;37(12):2029–39. https://doi.org/10.1111/echo.14869. Li Y, Li H, Zhu S, et al. Prognostic value of right ventricular longitudinal strain in patients with COVID-19. JACC Cardiovasc Imaging. 2020;13(11):2287–99. https://doi.org/10.1016/j.jcmg.2020.04.014. Karagodin I, Singulane CC, Descamps T, WASE-COVID Investigators, et al. Ventricular changes in patients with acute COVID-19 infection: follow-up of the world alliance societies of echocardiography (WASE-COVID) study. J Am Soc Echocardiogr. 2022;35(3):295–304. https://doi.org/10.1016/j.echo.2021.10.015. Karagodin I, Carvalho Singulane C, Woodward GM, WASE-COVID Investigators, et al. Echocardiographic correlates of in-hospital death in patients with acute COVID-19 infection: the world alliance societies of echocardiography (WASE-COVID) study. J Am Soc Echocardiogr. 2021;34(8):819–30. https://doi.org/10.1016/j.echo.2021.05.010. Tsolaki V, Zakynthinos GE, Papanikolaou J, et al. PEEP de-escalation in COVID-19-induced acute respiratory distress syndrome unloads the right ventricle improving hemodynamics and oxygenation. Am J Respir Crit Care Med. 2023;208(2):205–8. https://doi.org/10.1164/rccm.202301-0154LE. Doyen D, Dupland P, Morand L, et al. Characteristics of cardiac injury in critically ill patients with coronavirus disease 2019. Chest. 2021;159(5):1974–85. https://doi.org/10.1016/j.chest.2020.10.056. van den Heuvel FMA, Vos JL, Koop Y, et al. Cardiac function in relation to myocardial injury in hospitalized patients with COVID-19. Neth Heart J. 2020;28(7–8):410–7. https://doi.org/10.1007/s12471-020-01458-2. Baycan OF, Barman HA, Atici A, et al. Evaluation of biventricular function in patients with COVID-19 using speckle tracking echocardiography. Int J Cardiovasc Imaging. 2021;37(1):135–44. https://doi.org/10.1007/s10554-020-01968-5. Szekely Y, Lichter Y, Taieb P, Banai A, Hochstadt A, Merdler I, Gal Oz A, Rothschild E, Baruch G, Peri Y, Arbel Y, Topilsky Y. Spectrum of cardiac manifestations in COVID-19: A systematic echocardiographic study. Circulation. 2020;142(4):342–53. https://doi.org/10.1161/CIRCULATIONAHA.120.047971. Bieber S, Kraechan A, Hellmuth JC, et al. Left and right ventricular dysfunction in patients with COVID-19-associated myocardial injury. Infection. 2021;49(3):491–500. https://doi.org/10.1007/s15010-020-01572-8. Thygesen K, Alpert JS, Jaffe AS, Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction, et al. Fourth universal definition of myocardial infarction (2018). Circulation. 2018;138(20):e618–51. https://doi.org/10.1161/CIR.0000000000000617. Jansson S, Blixt PJ, Didriksson H, et al. Incidence of acute myocardial injury and its association with left and right ventricular systolic dysfunction in critically ill COVID-19 patients. Ann Intensive Care. 2022;12(1):56. https://doi.org/10.1186/s13613-022-01030-8. Garcia MA, Rucci JM, Thai KK, et al. Association between troponin I levels during sepsis and post sepsis cardiovascular complications. Am J Respir Crit Care Med. 2021;204(5):557–65. https://doi.org/10.1164/rccm.202103-0613OC. Røsjø H, Varpula M, Hagve TA, Karlsson S, Ruokonen E, Pettilä V, Omland T, FINNSEPSIS Study Group. Circulating high sensitivity troponin T in severe sepsis and septic shock: distribution, associated factors, and relation to outcome. Intensive Care Med. 2011;37(1):77–85. https://doi.org/10.1007/s00134-010-2051-x. Tsolaki V, Makris D, Zakynthinos E. COVID-19 mortality differences: patient-related data and intensive care unit load are prerequisites. Ann Am Thorac Soc. 2022;19(9):1622–3. https://doi.org/10.1513/AnnalsATS.202203-230LE. Tsolaki VS, Zakynthinos GE, Mantzarlis KD, et al. Driving pressure in COVID-19 acute respiratory distress syndrome is associated with respiratory distress duration before intubation. Am J Respir Crit Care Med. 2021;204(4):478–81. https://doi.org/10.1164/rccm.202101-0234LE.