Comprehensive resistome analysis reveals the prevalence of NDM and MCR-1 in Chinese poultry production

Nature Microbiology - Tập 2 Số 4
Yang Wang1, Rongmin Zhang1, Jiyun Li1, Zuowei Wu2, Wenjuan Yin1, Štefan Schwarz3, Jonathan M. Tyrrell4, Yongjun Zheng5, Shaolin Wang1, Zhangqi Shen1, Zhihai Liu6, Jianye Liu6, Lei Lei6, Mei Li4, Qidi Zhang7, Congming Wu1, Qijing Zhang2, Yongning Wu8, Timothy R. Walsh4, Jianzhong Shen1
1Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
2College of Veterinary Medicine, Iowa State University, Ames, 50011-1134, Iowa, USA
3Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany
4Department of Medical Microbiology and Infectious Disease, Institute of Infection & Immunity, UHW Main Building, Heath Park Hospital, Cardiff, CF14 4XN, UK
5College of Engineering, China Agricultural University, Beijing 100083, China
6Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China
7College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, Shandong, China
8The Key Laboratory of Food Safety Risk Assessment, Ministry of Health, and China National Center for Food Safety Risk Assessment, Beijing 100021, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

World population projected to reach 9.7 billion by 2050. United Nations (29 July 2015); http://www.un.org/en/development/desa/news/population/2015-report.html

Walsh, T. R. & Wu, Y. N. China bans colistin as a feed additive for animals. Lancet Infect. Dis. 16, 1102–1103 (2016).

Kumarasamy, K. K. et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect. Dis. 10, 597–602 (2010).

Munoz-Price, L. S. et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect. Dis. 13, 785–796 (2013).

Chen, Y., Zhou, Z., Jiang, Y. & Yu, Y. Emergence of NDM-1-producing Acinetobacter baumannii in China. J. Antimicrob. Chemother. 66, 1255–1259 (2011).

Wang, X. et al. High rate of New Delhi metallo-β-lactamase 1-producing bacterial infection in China. Clin. Infect. Dis. 56, 161–162 (2013).

Zhu, J. et al. Outbreak of NDM-1-producing Klebsiella pneumoniae ST76 and ST37 isolates in neonates. Eur. J. Clin. Microbiol. Infect. Dis. 35, 611–618 (2016).

Woodford, N., Wareham, D. W., Guerra, B. & Teale, C. Carbapenemase-producing Enterobacteriaceae and non-Enterobacteriaceae from animals and the environment: an emerging public health risk of our own making? J. Antimicrob. Chemother. 69, 287–291 (2014).

Michael, G. B. et al. Emerging issues in antimicrobial resistance of bacteria from food-producing animals. Future Microbiol. 10, 427–443 (2015).

Poirel, L., Stephan, R., Perreten, V. & Nordmann, P. The carbapenemase threat in the animal world: the wrong culprit. J. Antimicrob. Chemother. 69, 2007–2008 (2014).

Falagas, M. E., Karageorgopoulos, D. E. & Nordmann, P. Therapeutic options for infections with Enterobacteriaceae producing carbapenem-hydrolyzing enzymes. Future Microbiol. 6, 653–666 (2011).

Halaby, T., Al Naiemi, N., Kluytmans, J., van der Palen, J. & Vandenbroucke-Grauls, C. M. Emergence of colistin resistance in Enterobacteriaceae after the introduction of selective digestive tract decontamination in an intensive care unit. Antimicrob. Agents Chemother. 57, 3224–3229 (2013).

Liu, Y. Y. et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect. Dis. 16, 161–168 (2016).

McGann, P. et al. Escherichia coli harboring mcr-1 and blaCTX-M on a novel IncF plasmid: first report of mcr-1 in the USA. Antimicrob. Agents Chemother. 60, 4420–4421 (2016).

Schwarz, S. & Johnson, A. P. Transferable resistance to colistin: a new but old threat. J. Antimicrob. Chemother. 71, 2066–2070 (2016).

Espedido, B. A., Dimitrijovski, B., van Hal, S. J. & Jensen, S. O. The use of whole-genome sequencing for molecular epidemiology and antimicrobial surveillance: identifying the role of IncX3 plasmids and the spread of blaNDM-4-like genes in the Enterobacteriaceae. J. Clin. Pathol. 68, 835–838 (2015).

Zhang, R. M., Wang, Y. et al. Characterization of NDM-1-producing carbapenemase in Acinetobacter spp. and E. coli isolates from diseased pigs. Front. Agr. Sci. Eng. 2, 223–229 (2015).

Zhi, C., Lv, L., Yu, L. F., Doi, Y. & Liu, J.-H. Dissemination of the mcr-1 colistin resistance gene. Lancet Infect. Dis. 16, 292–293 (2016).

Hassan, B., Carvalho, M., Mushtaq, A. et al. Environmental Dissemination of MDRB Carrying blaNDM and blaCTX-M-15 in Hospital Environment, Drinking Water, Birds and Insects (ECCMID, 2015).

Wang, Y. et al. Multidrug resistance gene cfr in methicillin-resistant coagulase-negative staphylococci from chickens, ducks, and pigs in China. Int. J. Med. Microbiol. 303, 84–87 (2013).

Poirel, L., Walsh, T. R., Cuvillier, V. & Nordmann, P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn. Microbiol. Infect. Dis. 70, 119–123 (2011).

M100-S25: Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement (Clinical and Laboratory Standards, 2015).

Breakpoint Tables for Interpretation of MICs and Zone Diameters v.6.0 (European Committee on Antimicrobial Susceptibility Testing, 2016); http://www.eucast.org/clinical_breakpoints/

PlasmidFinder 1.3 (Center for Genomic Epidemiology, accessed 10 June 2016); https://cge.cbs.dtu.dk/services/PlasmidFinder/

Fang, L. et al. Co-spread of metal and antibiotic resistance within ST3-IncHI2 plasmids from E. coli isolates of food-producing animals. Sci. Rep. 6, 25312 (2016).

Yamaguchi, Y., Park, J. H. & Inouye, M. Toxin–antitoxin systems in bacteria and archaea. Annu. Rev. Genet. 45, 61–79 (2011).

Clermont, O., Bonacorsi, S. & Bingen, E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl. Environ. Microbiol. 66, 4555–4558 (2000).

Treangen, T. J., Ondov, B. D., Koren, S. & Phillippy, A. M. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol. 15, 524 (2014).

Wirth, T. et al. Sex and virulence in Escherichia coli: an evolutionary perspective. Mol. Microbiol. 60, 1136–1151 (2006).

Tang, J., Hanage, W. P., Fraser, C. & Corander, J. Identifying currents in the gene pool for bacterial populations using an integrative approach. PLoS Comput. Biol. 5, e1000455 (2009).

Corander, J., Marttinen, P., Siren, J. & Tang, J. Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinformatics 9, 539 (2008).

Cheng, L., Connor, T. R., Siren, J., Aanensen, D. M. & Corander, J. Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Mol. Biol. Evol. 30, 1224–1228 (2013).

Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

Price, M. N., Dehal, P. S. & Arkin, A. P. Fasttree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

Huson, D. H. & Scornavacca, C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst. Biol. 61, 1061–1067 (2012).

Huson, D. H. et al. Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinformatics 8, 460 (2007).