Phân tích toàn diện proteome trong mẫu rửa mũi sau khi tiếp xúc có kiểm soát với hạt nano hàn cho thấy sự kích hoạt giai đoạn cấp tính và một thụ thể hạt nhân, LXR/RXR, ảnh hưởng đến trạng thái của ma trận ngoại bào

Springer Science and Business Media LLC - Tập 15 - Trang 1-19 - 2018
Neserin Ali1, Stefan Ljunggren2, Helen M. Karlsson2, Aneta Wierzbicka3, Joakim Pagels3, Christina Isaxon3, Anders Gudmundsson3, Jenny Rissler3, Jörn Nielsen1, Christian H. Lindh1, Monica Kåredal1
1Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
2Occupational and Environmental Medicine Center, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
3Department of Design Sciences, Ergonomics and Aerosol Technology, Lund University, Lund, Sweden

Tóm tắt

Các nghiên cứu dịch tễ học đã chỉ ra rằng nhiều thợ hàn gặp phải các triệu chứng hô hấp. Trong quá trình hàn, một lượng lớn hạt nano có kích thước nhỏ trong không khí được tạo ra, có thể bị hít vào và lắng đọng ở đường hô hấp. Kiến thức về các cơ chế cơ bản gây ra các triệu chứng quan sát được vẫn còn thiếu sót, mặc dù viêm được cho là đóng vai trò trung tâm. Mục tiêu của nghiên cứu này là điều tra tác động của việc tiếp xúc với hạt mùi hàn lên mức độ biểu hiện proteome ở những thợ hàn bị triệu chứng hô hấp, và những thay đổi ở các chất trung gian protein trong mẫu rửa mũi đã được phân tích. Các chất trung gian này sẽ hữu ích trong việc làm rõ các cơ chế bệnh lý liên quan đến tác động do hạt mùi hàn. Trong một buồng tiếp xúc, 11 thợ hàn có triệu chứng liên quan đến công việc ở đường hô hấp dưới trong tháng qua đã được tiếp xúc với hạt mùi hàn thép nhẹ (1 mg/m3) và không khí được lọc, một cách mù đôi. Các mẫu rửa mũi đã được thu thập trước, ngay sau và vào ngày sau khi tiếp xúc. Các protein trong mẫu rửa mũi đã được phân tích bằng hai phương pháp khối phổ khác nhau, phát hiện không gắn nhãn chích LC–MS/MS và một phương pháp giám sát phản ứng chọn lọc LC–MS/MS có mục tiêu phân tích 130 protein và bốn sản phẩm phân hủy peptide in vivo. Phân tích cho thấy 30 protein bị thay đổi đáng kể liên quan đến hai con đường chính; kích hoạt tín hiệu phản ứng giai đoạn cấp tính và kích hoạt LXR/RXR, một loại thụ thể hạt nhân liên quan đến tín hiệu lipid. Các protein mô liên kết và các protein kiểm soát sự phân hủy của các mô này, bao gồm hai protein metalloproteinase ma trận khác nhau, MMP8 và MMP9, nằm trong số các enzyme bị thay đổi đáng kể và được xác định là những nhân tố quan trọng trong các con đường này. Tiếp xúc với hạt mùi hàn thép nhẹ gây ra những thay đổi đo được trên mức độ proteome trong ma trận rửa mũi ở những thợ hàn đã tiếp xúc, mặc dù không có triệu chứng lâm sàng nào xuất hiện. Các kết quả gợi ý rằng tiếp xúc gây ra tác động ngay lập tức lên mức độ proteome liên quan đến các protein giai đoạn cấp tính và các chất trung gian điều chỉnh tín hiệu lipid. Các protease tham gia duy trì sự cân bằng giữa sự hình thành và phân hủy các protein ma trận ngoại bào là những protein quan trọng trong các tác động do hạt gây ra.

Từ khóa

#hàn #triệu chứng hô hấp #hạt nano #proteome #rửa mũi #viêm #thụ thể hạt nhân #mô liên kết #metalloproteinase

Tài liệu tham khảo

WHO. Hazard prevention and control in the work environment: airborne dust. 1999. OSHA. Occupational safety and health guidance manual for hazardous waste site activities. 1986. NIOSH. NIOSH pocket guide to chemical hazards. 2007. WHO. WHO guidelines for indoor air quality: selected pollutants. Copenhagen: WHO Regional office for Europe. 2010. Antonini JM. Health effects of welding. Crit Rev Toxicol. 2003;33:61–103. Guha N, Loomis D, Guyton KZ, Grosse Y, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Vilahur N, Muller K, Straif K. Carcinogenicity of welding, molybdenum trioxide, and indium tin oxide. Lancet Oncol. 2017;18:581–2. Berlinger B, Benker N, Weinbruch S, L’Vov B, Ebert M, Koch W, Ellingsen DG, Thomassen Y. Physicochemical characterisation of different welding aerosols. Anal Bioanal Chem. 2011;399:1773–80. Jenkins NT, Eagar TW. Chemical analysis of welding fume particles. Weld J New York. 2005;84(6):87. Isaxon C, Pagels J, Gudmundsson A, Asbach C, John A, Kuhlbusch T, Karlsson J, Kammer R, Tinnerberg H, Nielsen J. Characteristics of welding fume aerosol investigated in three Swedish workshops. In: Journal of physics: conference series. IOP Publishing; 2009. p. 012059. Ali N, Mattsson K, Rissler J, Karlsson HM, Svensson CR, Gudmundsson A, Lindh CH, Jonsson BA, Cedervall T, Karedal M. Analysis of nanoparticle-protein coronas formed in vitro between nanosized welding particles and nasal lavage proteins. Nanotoxicology. 2016;10:226–34. Hedmer M, Karlsson JE, Andersson U, Jacobsson H, Nielsen J, Tinnerberg H. Exposure to respirable dust and manganese and prevalence of airways symptoms, among Swedish mild steel welders in the manufacturing industry. Int Arch Occup Environ Health. 2014;87:623–34. Jonsson LS, Tinnerberg H, Jacobsson H, Andersson U, Axmon A, Nielsen J. The ordinary work environment increases symptoms from eyes and airways in mild steel welders. Int Arch Occup Environ Health. 2015;88:1131–40. Li H, Hedmer M, Wojdacz T, Hossain MB, Lindh CH, Tinnerberg H, Albin M, Broberg K. Oxidative stress, telomere shortening, and DNA methylation in relation to low-to-moderate occupational exposure to welding fumes. Environ Mol Mutagen. 2015;56:684–93. Antonini JM, Krishna Murthy GG, Brain JD. Responses to welding fumes: lung injury, inflammation, and the release of tumor necrosis factor-alpha and interleukin-1 beta. Exp Lung Res. 1997;23:205–27. Zeidler-Erdely PC, Erdely A, Antonini JM. Immunotoxicology of arc welding fume: worker and experimental animal studies. J Immunotoxicol. 2012;9:411–25. Erdely A, Antonini JM, Young S-H, Kashon ML, Gu JK, Hulderman T, Salmen R, Meighan T, Roberts JR, Zeidler-Erdely PC. Oxidative stress and reduced responsiveness of challenged circulating leukocytes following pulmonary instillation of metal-rich particulate matter in rats. Part Fibre Toxicol. 2014;11:34. Popstojanov R, Antonini JM, Salmen R, Ye M, Zheng W, Castranova V, Fekedulegn DB, Kan H. Alterations in cardiomyocyte function after pulmonary treatment with stainless steel welding fume in rats. J Toxicol Environ Health A. 2014;77:705–15. Dierschke K, Isaxon C, Andersson UB, Assarsson E, Axmon A, Stockfelt L, Gudmundsson A, Jönsson BA, Kåredal M, Löndahl J, Pagels J. Acute respiratory effects and biomarkers of inflammation due to welding-derived nanoparticle aggregates. Int Arch Occup Environ Health. 2017;90:451–63. Sjöström M, Ossola R, Breslin T, Rinner O, Malmström L, Schmidt A, Aebersold R, Malmström J, Niméus E. A combined shotgun and targeted mass spectrometry strategy for breast cancer biomarker discovery. J Proteome Res. 2015;14:2807–18. Schmidt A, Forne I, Imhof A. Bioinformatic analysis of proteomics data. BMC Syst Biol. 2014;8:S3. Isaxon C, Dierschke K, Pagels J, Löndahl J, Gudmundsson A, Hagerman I, Berglund M, Wierzbicka A, Assarsson E, Andersson U. A novel system for source characterization and controlled human exposure to nanoparticle aggregates generated during gas–metal arc welding. Aerosol Sci Technol. 2013;47:52–9. Mortstedt H, Karedal MH, Jonsson BA, Lindh CH. Screening method using selected reaction monitoring for targeted proteomics studies of nasal lavage fluid. J Proteome Res. 2013;12:234–47. Veidal SS, Karsdal MA, Leeming DJ, Barascuk N, Skjøt-Arkil H, Vassiliadis E. Pathology biomarker assay. In Book Pathology biomarker assay City: Google Patents; 2014. Veidal SS, Karsdal MA, Nawrocki A, Larsen MR, Dai Y, Zheng Q, Hägglund P, Vainer B, Skjøt-Arkil H, Leeming DJ. Assessment of proteolytic degradation of the basement membrane: a fragment of type IV collagen as a biochemical marker for liver fibrosis. Fibrogenesis Tissue Rep. 2011;4:22. Eidhammer I, Barsnes H, Eide GE, Martens L. Computational and statistical methods for protein quantification by mass spectrometry. London: Wiley; 2012. p. 2018–234. Clough T, Thaminy S, Ragg S, Aebersold R, Vitek O. Statistical protein quantification and significance analysis in label-free LC–MS experiments with complex designs. BMC Bioinform. 2012;13(Suppl 16):S6. Carvajal-Rodriguez A, de Una-Alvarez J, Rolan-Alvarez E. A new multitest correction (SGoF) that increases its statistical power when increasing the number of tests. BMC Bioinform. 2009;10:209. de Una-Alvarez J. The beta-binomial SGoF method for multiple dependent tests. Stat Appl Genet Mol Biol. 2012; 11:Article 14. Castro-Conde I, Dohler S, de Una-Alvarez J. An extended sequential goodness-of-fit multiple testing method for discrete data. Stat Methods Med Res. 2015;26(5):2356–75. Boukelia B, Fogarty MC, Davison RCR, Florida-James GD. Diurnal physiological and immunological responses to a 10-km run in highly trained athletes in an environmentally controlled condition of 6 °C. Eu J Appl Physiol. 2017;117:1–6. Gooley JJ, Chua EC-P. Diurnal regulation of lipid metabolism and applications of circadian lipidomics. J Genet Genomics. 2014;41:231–50. Jarvela M, Kauppi P, Tuomi T, Luukkonen R, Lindholm H, Nieminen R, Moilanen E, Hannu T. Inflammatory response to acute exposure to welding fumes during the working day. Int J Occup Med Environ Health. 2013;26:220–9. Fanjul-Fernández M, Folgueras AR, Cabrera S, López-Otín C. Matrix metalloproteinases: evolution, gene regulation and functional analysis in mouse models. Biochim Biophys Acta. 2010;1803:3–19. Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol. 2007;8:221–33. Brew K, Nagase H. The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim Biophys Acta. 2010;1803:55–71. Meng X-M, Nikolic-Paterson DJ, Lan HY. TGF-[beta]: the master regulator of fibrosis. Nat Rev Nephrol. 2016;12:325–38. Meldrum M, Rawbone R, Curran AD, Fishwick D. The role of occupation in the development of chronic obstructive pulmonary disease (COPD). Occup Environ Med. 2005;62:212–4. Koh DH, Kim JI, Kim KH, Yoo SW. Welding fume exposure and chronic obstructive pulmonary disease in welders. Occup Med. 2015;65:72–7. Hannu T, Piipari R, Tuppurainen M, Nordman H, Tuomi T. Occupational asthma caused by stainless steel welding fumes: a clinical study. Eur Respir J. 2007;29:85–90. Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014;15:786–801. Van Lint P, Libert C. Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation. J Leukoc Biol. 2007;82:1375–81. Giannandrea M, Parks WC. Diverse functions of matrix metalloproteinases during fibrosis. Dis Models Mech. 2014;7:193–203. Grzela K, Litwiniuk M, Zagorska W, Grzela T. Airway remodeling in chronic obstructive pulmonary disease and asthma: the role of matrix metalloproteinase-9. Arch Immunol Ther Exp (Warsz). 2016;64:47–55. James AL, Elliot JG, Abramson MJ, Walters EH. Time to death, airway wall inflammation and remodelling in fatal asthma. Eur Respir J. 2005;26:429–34. Lu P, Takai K, Weaver VM, Werb Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol. 2011;3:a005058. Koo H-K, Hong Y, Lim MN, Yim J-J, Kim WJ. Relationship between plasma matrix metalloproteinase levels, pulmonary function, bronchodilator response, and emphysema severity. Int J Obstruct Pulm Dis. 2016;11:1129–37. Atkinson JJ, Senior RM. Matrix metalloproteinase-9 in lung remodeling. Am J Respir Cell Mol Biol. 2003;28:12–24. Jönsson LS, Nielsen J, Broberg K. Gene expression analysis in induced sputum from welders with and without airway-related symptoms. Int Arch Occup Environ Health. 2011;84:105–13. Grzela K, Zagórska W, Jankowska-Steifer E, Grzela T. Review paper < br > chronic inflammation in the respiratory tract and ciliary dyskinesia. Cent Eur J Immunol. 2013;38:122–8. Haswell LE, Hewitt K, Thorne D, Richter A, Gaca MD. Cigarette smoke total particulate matter increases mucous secreting cell numbers in vitro: a potential model of goblet cell hyperplasia. Toxicol In Vitro. 2010;24:981–7. Levels JH, Geurts P, Karlsson H, Marée R, Ljunggren S, Fornander L, Wehenkel L, Lindahl M, Stroes ES, Kuivenhoven JA, Meijers JC. High-density lipoprotein proteome dynamics in human endotoxemia. Proteome Sci. 2011;9:34. Karlsson H, Kontush A, James RW. Functionality of HDL: antioxidation and detoxifying effects. In: von Eckardstein A, Kardassis D, editors. High density lipoproteins: from biological understanding to clinical exploitation. Cham: Springer; 2015. p. 207–28. Alexopoulos EC, Cominos X, Trougakos IP, Lourda M, Gonos ES, Makropoulos V. Biological monitoring of hexavalent chromium and serum levels of the senescence biomarker apolipoprotein J/Clusterin in welders. Bioinorg Chem Appl. 2008. https://doi.org/10.1155/2008/420578. Fiancette R, Vincent-Fabert C, Guerin E, Trimoreau F, Denizot Y. Lipid mediators and human leukemic blasts. J Oncol. 2011;2011:7. Wang Z, Neuberg D, Su L, Kim JY, Chen J-C, Christiani DC. Prospective study of metal fume-induced responses of global gene expression profiling in whole blood. Inhal Toxicol. 2008;20:1233–44. van den Broek I, Smit NP, Romijn FP, van der Laarse A, Deelder AM, van der Burgt YE, Cobbaert CM. Evaluation of interspecimen trypsin digestion efficiency prior to multiple reaction monitoring-based absolute protein quantification with native protein calibrators. J Proteome Res. 2013;12:5760–74. Aebersold R, Burlingame AL, Bradshaw RA. Western blots versus selected reaction monitoring assays: time to turn the tables? Mol Cell Proteomics. 2013;12:2381–2. Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med. 1999;340:448–54. Kholodenko BN. Cell signalling dynamics in time and space. Nat Rev Mol Cell Biol. 2006;2006(7):165–76.