Phân tích gen toàn diện của Bacillus subtilis và Bacillus paralicheniformis liên quan đến bông hạt ngọc trai và tiềm năng kháng khuẩn của chúng đối với các tác nhân gây bệnh thực vật quan trọng

Mushineni Ashajyothi1, Shivannegowda Mahadevakumar2, Y. N. Venkatesh1, Pullabhotla V. S. R. N. Sarma3, Chalasani Danteswari3, Alexander Balamurugan4, Ganesan Prakash4, Vikas Khandelwal5, C. Tarasatyavathi5, Appa Rao Podile3, Mysore S. Kirankumar6, Siddaiah Chandranayaka7
1Plant Protection Lab, ICAR-Central Agroforestry Research Institute, Jhansi, India
2Botanical Survey of India, Andaman and Nicobar Regional Centre, Port Blair, India
3Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
4ICAR-Indian Agricultural Research Institute, New Delhi, India
5All India Coordinated Research Project On Pearl Millet, Agriculture University, Jodhpur, India
6Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, USA
7Department of Studies in Biotechnology, University of Mysore, Mysore, India

Tóm tắt

Hệ vi sinh vật thực vật đóng vai trò đa dạng để nâng cao khả năng sống sót cũng như năng suất. Trong nghiên cứu này, hai loài vi sinh vật thuộc bông hạt ngọc trai là Bacillus subtilis PBs 12 và Bacillus paralicheniformis PBl 36 được phát hiện có các đặc tính có lợi bao gồm thúc đẩy sự phát triển của thực vật và hoạt động kháng nấm phổ rộng đối với các tác nhân gây bệnh thực vật thuộc nhiều loài khác nhau. Hiểu biết về bộ gen của chúng sẽ hỗ trợ trong việc xây dựng một chế phẩm sinh học cho bảo vệ cây trồng trong khi khai thác các vai trò chức năng có lợi của chúng. Hai loài firmicute tiềm năng đã được tách lập từ bông hạt ngọc trai. Đặc điểm hình thái, sinh hóa và phân tử đã tiết lộ danh tính của chúng là Bacillus subtilis PBs 12 và Bacillus paralicheniformis PBl 36. Các thử nghiệm kích thích hạt giống đã cho thấy khả năng của cả hai loài trong việc thúc đẩy sự phát triển của thực vật và chỉ số sức sống của cây con. Các thử nghiệm in vitro với PBs 12 và PBl 36 cho thấy hiệu ứng kháng sinh đối với các tác nhân gây bệnh thực vật thuộc nhiều loài khác nhau (Magnaporthe grisea; Sclerotium rolfsii; Fusarium solani; Alternaria alternata; Ganoderma sp.) của cây trồng và các loài cây đa dụng. Phân tích chuỗi gen toàn bộ đã được thực hiện để khám phá tiềm năng di truyền của các vi khuẩn này cho bảo vệ thực vật. Các bộ gen hoàn chỉnh của PBs 12 và PBl 36 gồm một nhiễm sắc thể hình tròn với kích thước 4.02 và 4.33 Mb và 4,171 và 4,606 gen, với hàm lượng G+C lần lượt là 43.68 và 45.83%. Phân tích Độ tương đồng nucleotide trung bình (ANI) cho thấy sự tương đồng gần của PBs 12 và PBl 36 với các chủng có lợi khác của B. subtilis và B. paralicheniformis và phát hiện xa cách với B. altitudinis, B. amyloliquefaciens và B. thuringiensis. Phân loại chức năng cho thấy phần lớn các lớp chu trình của PBs 12 (30) và PBl 36 (29) liên quan đến sự tổng hợp của các hợp chất thứ cấp, polyketides và peptide phi ribosome, tiếp theo là phân hủy và chuyển hóa xenobiotic (21). Hơn nữa, 14 vùng gen của PBs 12 và 15 của PBl 36 liên quan đến việc tổng hợp RiPP (peptide được tổng hợp bởi ribosome và được biến đổi sau dịch mã), terpenes, peptide vòng (CDPs), synthease polyketide loại III (T3PKSs), sactipeptides, lanthipeptides, siderophores, NRPS (Non-Ribosomal Peptide Synthetase), NRP-metallophone, v.v. Đã phát hiện rằng các vùng này chứa từ 25,458 đến 33,000 cụm cod không hoạt động MiBiG liên quan đến hợp chất thứ cấp mã hóa cho nhiều sản phẩm khác nhau, chẳng hạn như kháng sinh. Việc sàng lọc dựa trên PCR để tìm sự hiện diện của gen peptide kháng khuẩn (peptide lipo vòng) trong PBs 12 và 36 đã xác nhận tiềm năng kháng nấm phổ rộng của chúng với sự hiện diện của gen spoVG, bacA, và srfAA AMP, những gen mã hóa các hợp chất kháng khuẩn như subtilin, bacylisin và surfactin. Các nghiên cứu in vitro và phân tích bộ gen kết hợp đã làm nổi bật tiềm năng kháng nấm của Bacillus subtilis PBs12 và Bacillus paralicheniformis PBl36 liên kết với bông hạt ngọc trai. Khả năng di truyền để tổng hợp nhiều hợp chất kháng khuẩn cho thấy giá trị công nghiệp của PBs 12 và PBl 36, điều này làm sáng tỏ các nghiên cứu tiếp theo để thiết lập hành động của chúng như một chất kích thích sinh học cho bảo vệ cây trồng.

Từ khóa

#hệ vi sinh thực vật #Bacillus subtilis #Bacillus paralicheniformis #tác nhân gây bệnh thực vật #kháng nấm #bảo vệ cây trồng

Tài liệu tham khảo

Reddy SP, Satyavathi CT, Khandelwal V, Patil HT, Gupta PC, Sharma LD, et al. Performance and stability of pearl millet varieties for grain yield and micronutrients in arid and semi-arid regions of India. Front Plant Sci. 2021;12:670201. Ministry of Consumer Affairs, Food & Public Distribution. Area under cultivation of millets in 2021–22 is 15.48 million hectares, in 2013–14 it was 12.29 million hectares. https://pib.gov.in/PressReleasePage.aspx?PRID=1907194. Wilson JP. Pearl Millet Diseases: A Compilation of Information on the Known Pathogens of Pearl Millet: Pennisetum Glaucum (L.) R. Br (No. 716). 2000; US Department of Agriculture, Agricultural Research Service. Ashajyothi M, Balamurugan A, Shashikumara P, Pandey N, Agarwal DK, Tarasatyavati CC, et al. First report of pearl millet bacterial leaf blight caused by Pantoea stewartii subspecies indologenes in India. Plant Dis. 2021;105(11):3736. Singh S, Sharma R, Chandranayaka S, Tarasatyavathi C, Raj C. Understanding pearl millet blast caused by Magnaporthe grisea and strategies for its management. In: Nayaka, S.C., Hosahatti, R., Prakash, G., Satyavathi, C.T., Sharma, R. (eds) Blast Disease of Cereal Crops. Fungal Biology. Springer, Cham. 2021;151–172. Prakash G, Kumar A, Sheoran N, Aggarwal R, Satyavathi CT, Chikara SK, et al. First draft genome sequence of a pearl millet blast pathogen, Magnaporthe grisea strain PMg_Dl, obtained using PacBio single-molecule real-time and illumina NextSeq 500 sequencing. Microbiol Res Announ. 2019;8(20):101–28. Adhikari S, Joshi SM, Athoni BK, Patil PV, Jogaiah S. Elucidation of genetic relatedness of Magnaporthe grisea, an incitent of pearl millet blast disease by molecular markers associated with virulence of host differential cultivars. Microbial Pathogen. 2020;149:104533. Kumar ABM, Hosahatti R, Tarasatyavathi C, Prakash G, Sharma R, Narasimhulu R, Chandranayaka S. Pearl millet blast resistance: Current status and recent advancements in genomic selection and genome editing approaches. Blast Disease of Cereal Crops: Evolution and Adaptation in Context of Climate Change, 2021;183–200. Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, et al. Defining the core arabidopsis thaliana root microbiome. Nature. 2012;488(7409):86–90. Turner TR, James EK, Poole PS. The plant microbiome. Genome Biol. 2013;14(6):1. Chaparro JM, Badri DV, Vivanco JM. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 2014;8(4):790–803. Lebeis SL. The potential for give and take in plant–microbiome relationships. Front Plant Sci. 2014;5:287. Bulgarelli D, Schlaeppi K, Spaepen S, Van Themaat EVL, Schulze-Lefert P. Structure and functions of the bacterial microbiota of plants. Ann Rev Plant Biol. 2013;64:807–38. Smith DL, Subramanian S, Lamont JR, Bywater-Ekegärd M. Signaling in the phytomicrobiome: breadth and potential. Front Plant Sci. 2015;6:709. Hardoim PR, Van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev. 2015;79(3):293–320. Saxena AK, Kumar M, Chakdar H, Anuroopa N, Bagyaraj DJ. Bacillus species in soil as a natural resource for plant health and nutrition. J Appl Microbiol. 2020;128(6):1583–94. Liu X, Huang Z, Havrilla CA, Liu Y, Wu GL. Plant litter crust role in nutrients cycling potentials by bacterial communities in a sandy land ecosystem. Land Degrad Develop. 2021;32(11):3194–203. Nayak SK. Multifaceted applications of probiotic Bacillus species in aquaculture with special reference to Bacillus subtilis. Rev Aquacul. 2021;13(2):862–906. Sivasakthi S, Usharani G, Saranraj P. Biocontrol potentiality of plant growth promoting bacteria (PGPR)-Pseudomonas fluorescens and Bacillus subtilis: a review. Afr J Agricul Res. 2014;9(16):1265–77. Wan T, Zhao H, Wang W. Effects of the biocontrol agent Bacillus amyloliquefaciens SN16-1 on the rhizosphere bacterial community and growth of tomato. J Phytopathol. 2018;166(5):324–32. Velmurugan S, Ashajyothi M, Charishma K, Kumar S, Balamurugan A, Javed M, Karwa S, Ganesan P, Subramanian S, Gogoi R, Eke P. Enhancing defense against rice blast disease: unveiling the role of leaf endophytic firmicutes in antifungal antibiosis and induced systemic resistance. Microb Pathogen. 2023;184:106326. Kloepper JW, Ryu CM, Zhang S. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathol. 2004;94(11):1259–66. Hashem A, Tabassum B, Allah AEF. Bacillus subtilis: a plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J Biol Sci. 2019;26(6):1291–7. Erlacher A, Cardinale M, Grosch R, Grube M, Berg G. The impact of the pathogen Rhizoctonia solani and its beneficial counterpart Bacillus amyloliquefaciens on the indigenous lettuce microbiome. Front Microbiol. 2014;5:175. Caballero P, Macías-Benítez S, Revilla E, Tejada M, Parrado J, Castaño A. Effect of subtilisin, a protease from Bacillus sp., on soil biochemical parameters and microbial biodiversity. Eur J Soil Biol. 2020;101:103244. Hashmi I, Bindschedler S, Junier P. Firmicutes. In Beneficial microbes in agro-ecology. Academic Press. 2020. Li Q, Xing Y, Fu X, Ji L, Li T, Wang J, Chen G, Qi Z, Zhang Q. Biochemical mechanisms of rhizospheric Bacillus subtilis-facilitated phytoextraction by alfalfa under cadmium stress–Microbial diversity and metabolomics analyses. Ecotoxicol Environ Safety. 2021;212:112016. Manjunatha BS, Nivetha N, Krishna GK, Elangovan A, Pushkar S, Chandrashekar N, et al. Plant growth-promoting rhizobacteria Shewanella putrefaciens and cronobacter dublinensis enhance drought tolerance of pearl millet by modulating hormones and stress-responsive genes. Physiol Plant. 2022;174:13676–13676. Ribeiro VP, Marriel IE, de Sousa SM, de Paula Lana UG, Mattos BB, de Oliveira CA, et al. Endophytic bacillus strains enhance pearl millet growth and nutrient uptake under low-P. Braz J Microbiol. 2018;49:40–6. Kushwaha P, Kashyap PL, Srivastava AK, Tiwari RK. Plant growth promoting and antifungal activity in endophytic bacillus strains from pearl millet (Pennisetum glaucum). Braz J Microbiol. 2019;51(1):229–41. Eyre AW, Wang M, Oh Y, Dean RA. Identification and characterization of the core rice seed microbiome. Phytobiomes J. 2019;3(2):148–57. Janse JD. Phytobacteriology: Principles and practice. Wallingford: CABI Publishing; 2005. Schaad NW, Jones JB, Chun W. Laboratory guide for identification of plant pathogenic bacteria. 3rd ed. Beijing: China Agricultural Science and Technology Press; 2011. Chen WP, Kuo TT. A simple and rapid method for preparation of gram negative bacterial genomic DNA. Nucleic Acids Res. 1993;21(9):2260. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993;10(3):512–26. Ashajyothi M, Kumar A, Sheoran N, Ganesan P, Gogoi R, Subbaiyan GK, Bhattacharya R. Black pepper (Piper nigrum L.) associated endophytic Pseudomonas putida BP25 alters root phenotype and induces defense in rice (Oryza sativa L.) against blast disease incited by Magnaporthe oryzae. Biological Control. 2020;143:104181. Abdul-Baki AA, Anderson JD. Vigor determination in soybean seed by multiple criteria 1. Crop Sci. 1973;13(6):630–3. Dennis C, Webster J. Antagonistic properties of species-groups of trichoderma: I. Production of non-volatile antibiotics. Trans Brit Mycolog Soc. 1971;57(1):25-IN23. Pandey KK, Upadhyay JP. "Microbial population from rhizosphere and non-rhizosphere soil of pigeonpea: screening for resident antagonist and mode of mycoparasitism. J Mycol Plant Pathol. 2000;30(1):7–10. Yoon SH, Ha SM, Kwon S, et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. 2017;67:1613–7. Medema MH, Blin K, Cimermancic P, et al. AntiSMASH: Rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 2011;39:339–46. Blin K, Medema MH, Kazempour D, et al. antiSMASH 2.0--a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res. 2013;41:204–12. Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, et al. Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci. 2018;9:1473. Smith DL, Praslickova D, Ilangumaran G. Inter-organismal signaling and management of the phytomicrobiome. Front Plant Sci. 2015;6:722. Manjunatha BS, Paul S, Aggarwal C, Bandeppa S, Govindasamy V, Dukare AS, et al. Diversity and tissue preference of osmotolerant bacterial endophytes associated with pearl millet genotypes having differential drought susceptibilities. Microb Ecol. 2019;77:676–88. Kushwaha P, Kashyap PL, Kuppusamy P, Srivastava AK, Tiwari RK. Functional characterization of endophytic bacilli from pearl millet (Pennisetum glaucum) and their possible role in multiple stress tolerance. Plant Biosyt. 2020;154(4):503–14. Kumar K, Verma A, Pal G, Anubha, White JF, Verma SK. Seed endophytic bacteria of pearl millet (Pennisetum glaucum L.) promote seedling development and defend against a fungal phytopathogen. Front Microbiol. 2021;12:774293. Kaur T, Devi R, Kumar S, Kour D, Yadav AN. Plant growth promotion of pearl millet by novel bacterial consortium with multifunctional attributes. Biologia. 2023;78(2):621–31. Bai YQ, Xin XL, Lai YZ, Zhang XC, Zhang GJ, Liu JF, Xin YP. Isolation and screening of Bacillus subtilis. J Anim Sci & Vet Med. 2013;32:24–31. Ming H, Lina DOU, Qing TIAN. Advances in application research of Bacillus subtilis. J Anhui Agric Sci. 2008;36:11623–11622. Rey MW, Ramaiya P, Nelson BA, Brody-Karpin SD, Zaretsky EJ, Tang M, et al. Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biol. 2004;5:R77. Ahire JJ, Kashikar MS, Lakshmi SG, Madempudi R. Identification and characterization of antimicrobial peptide produced by indigenously isolated Bacillus paralicheniformis UBBLi30 strain. 3 Biotech. 2020;10(3):112. Fatani S, Saito Y, Alarawi M, Gojobori T, Mineta K. Genome sequencing and identification of cellulase genes in Bacillus paralicheniformis strains from the Red Sea. BMC Microbiol. 2021;21:1–12. Janda JM, Abbott SL. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J Clin Microbiol. 2007;45(9):2761–4. Muhamad Rizal NS, Neoh HM, Ramli R, ALK Periyasamy PR, Hanafiah A, Abdul Samat MN, et al. Advantages and limitations of sequencing for pathogen identification in the diagnostic microbiology laboratory: perspectives from a middle-income country. Diagnostics. 2020;10(10):816. Blake C, Christensen MN, Kovács ÁT. Molecular aspects of plant growth promotion and protection by Bacillus subtilis. Mol Plant-Microbe Inter. 2021;34(1):15–25. Wang Y, Liu H, Liu K, Wang C, Ma H, Li Y, Hou Q, et al. Complete genome sequence of Bacillus paralicheniformis MDJK30, a plant growth-promoting rhizobacterium with antifungal activity. Genome Announc. 2017;5(25):10–1128. Valenzuela-Ruiz V, Robles-Montoya RI, Parra-Cota FI, Santoyo G, del Carmen Orozco-Mosqueda M, Rodríguez-Ramírez R, de Los Santos-Villalobos S. Draft genome sequence of Bacillus paralicheniformis TRQ65, a biological control agent and plant growth-promoting bacterium isolated from wheat (Triticum turgidum subsp. durum) rhizosphere in the Yaqui Valley, Mexico. 3 Biotech. 2019;9:1–7. Iqbal S, Qasim M, Rahman H, Khan N, Paracha RZ, Bhatti MF, Javed A, Janjua HA. Genome mining, antimicrobial and plant growth-promoting potentials of halotolerant Bacillus paralicheniformis ES-1 isolated from salt mine. Mol Genet Genomics. 2023;298(1):79–93. Matilla MA, Krell T. Plant growth promotion and biocontrol mediated by plant-associated bacteria. Plant Microbiome: Stress Response 2018:45–80. Earl AM, Losick R, Kolter R. Ecology and genomics of Bacillus subtilis. Trends Microbiol. 2008;16:269–75. Todorova S, Kozhuharova L. Characteristics and antimicrobial activity of Bacillus subtilis strains isolated from soil. World J Microbiol Biotechnol. 2010;26:1207–16. Ashajyothi M, Kumar A. Microbial elicitors: molecules with versatile functions for plant growth and defense. Cutting Edge. 2018;21:9–14. Patel A, Kumar A, Sheoran N, Kumar M, Sahu KP, Ganeshan P, Ashajyothi M, Gopalakrishnan S, Gogoi R. Antifungal and defense elicitor activities of pyrazines identified in endophytic Pseudomonas putida BP25 against fungal blast incited by Magnaporthe oryzae in rice. J Plant Dis Prot. 2021;128:261–72. Ashajyothi M, Balamurugan A, Patel A, Krishnappa C, Kumar R, Kumar A. Cell wall polysaccharides of endophytic pseudomonas putida elicit defense against rice blast disease. J Appl Microbiol. 2023;134(2):lxac042. Peters L, König GM, Wright AD, Pukall R, Stackebrandt E, Eberl L, Riedel K. Secondary metabolites of flustra foliacea and their influence on bacteria. Appl Environ Microbiol. 2003;69(6):3469–75. Chaabouni I, Guesmi A, Cherif A. Secondary metabolites of Bacillus: potentials in biotechnology. Bacillus Thuringiensis Biotechnol. 2012;9:347–66. Tyc O, Song C, Dickschat JS, Vos M, Garbeva P. The ecological role of volatile and soluble secondary metabolites produced by soil bacteria. Trends Microbiol. 2017;25(4):280–92. Kaspar F, Neubauer P, Gimpel M. Bioactive secondary metabolites from Bacillus subtilis: a comprehensive review. J Nat Prod. 2019;82(7):2038–53. Han X, Shiwa Y, Itoh M, Suzuki T, Yoshikawa H, Nakagawa T, Nagano H. Molecular cloning and sequence analysis of an extracellular protease from four Bacillus subtilis strains. Biosci Biotech Biochem. 2013;77(4):870–3. Nye TM, Schroeder JW, Kearns DB, Simmons LA. Complete genome sequence of undomesticated Bacillus subtilis strain NCIB 3610. Genome Announc. 2017;5(20):10–1128. Ahn S, Jun S, Ro HJ, Kim JH, Kim S. Complete Genome of Bacillus subtilis subsp. subtilis KCTC 3135T and Variation in Cell Wall Genes of B. subtilis Strains. J Microbiol Biotechnol. 2018;28(10):1760–8. Othoum G, Bougouffa S, Razali R, Bokhari A, Alamoudi S, Antunes A, et al. In silico exploration of red sea bacillus genomes for natural product biosynthetic gene clusters. BMC Genomics. 2018;19:1–11. Olajide AM, Chen S, LaPointe G. Markers to rapidly distinguish Bacillus paralicheniformis from the very close relative. Bacillus licheniformis Front Microbiol. 2021;11:596828. Du Y, Ma J, Yin Z, Liu K, Yao G, Xu W, et al. Comparative genomic analysis of Bacillus paralicheniformis MDJK30 with its closely related species reveals an evolutionary relationship between B. paralicheniformis and B. licheniformis. BMC Genomics. 2019;20(1):1–16. Farace G, Fernandez O, Jacquens L, Coutte F, Krier F, Jacques P, et al. Cyclic lipopeptides from Bacillus subtilis activate distinct patterns of defence responses in grapevine. Mol Plant Pathol. 2015;16(2):177–87. Ashajyothi M, Velmurugan S, Kundu A, Balamurugan A, Chouhan V, Kumar A. Hydroxamate siderophores secreted by plant endophytic Pseudomonas putida elicit defense against blast disease in rice incited by Magnaporthe oryzae. Letters Applied Microbiol. 2023;76(12):ovad139. García de Salamone IE, Hynes RK, Nelson LM. Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol. 2001;47(5):404–11. Rey MW, Ramaiya P, Nelson BA, Brody-Karpin SD, Zaretsky EJ, Tang M, de Leon AL, Xiang H, Gusti V, Clausen IG, Olsen PB. Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biol. 2004;5(10):1–2. Singh M, Patel SK, Kalia VC. Bacillus subtilis as potential producer for polyhydroxyalkanoates. Microb Cell Fact. 2009;8(1):1–11. Meng F, Ma L, Ji S, Yang W, Cao B. Isolation and characterization of Bacillus subtilis strain BY-3, a thermophilic and efficient cellulase-producing bacterium on untreated plant biomass. Lett Appl Microbiol. 2014;59(3):306–12. Dunlap CA, Kwon SW, Rooney AP, Kim SJ. Bacillus paralicheniformis sp. nov., isolated from fermented soybean paste. Int J Syst Evol Microbiol. 2015;65:3487–92. Su Y, Liu C, Fang H, Zhang D. Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine. Microb Cell Fact. 2020;19(1):1–12. Crovadore J, Cochard B, Grizard D, Chablais R, Baillarguet M, Comby M, Lefort F. Draft genome sequence of Bacillus licheniformis strain UASWS1606, a plant biostimulant for agriculture. Microbiol Res Announcements. 2020;9(37):10–1128. Araujo FF, Henning AA, Hungria M. Phytohormones and antibiotics produced by Bacillus subtilis and their effects on seed pathogenic fungi and on soybean root development. World J Microbiol Biotechnol. 2005;21:1639–45. Konz D, Klens A, Schörgendorfer K, Marahiel MA. The bacitracin biosynthesis operon of Bacillus licheniformis ATCC 10716: molecular characterization of three multi-modular peptide synthetases. Chem Biol. 1997;4:927–37. Sidorova TM, Asaturova AM, Homyak AI. Biologically active metabolites of Bacillus subtilis and their role in the control of phytopathogenic microorganisms. Agric Biol. 2018;53(1):29–37. Kong HG, Kim JC, Choi GJ, Lee KY, Kim HJ, Hwang EC, et al. Production of surfactin and iturin by Bacillus licheniformis N1 responsible for plant disease control activity. The Plant Pathol J. 2010;26(2):170–7. Zeriouh H, Romero D, García-Gutiérrez L, Cazorla FM, de Vicente A, Pérez-García A. The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of cucurbits. Mol Plant-Microbe Inter. 2011;24(12):1540–52. Alvarez F, Castro M, Principe A, Borioli G, Fischer S, Mori G, Jofre E. The plant-associated Bacillus amyloliquefaciens strains MEP218 and ARP23 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease. J Appl Microbiol. 2012;112(1):159–74. Crane JM, Gibson DM, Vaughan RH, Bergstrom GC. Iturin levels on wheat spikes linked to biological control of Fusarium head blight by Bacillus amyloliquefaciens. Phytopathol. 2013;103(2):146–55. R Radhakrishnan A Hashem EF Abd_Allah. Bacillus: a biological tool for crop improvement through bio-molecular changes in adverse environments Front Physiol 2017;8:667 Gabra FA, Abd-Alla MH, Danial AW, Abdel-Basset R, Abdel-Wahab AM. Production of biofuel from sugarcane molasses by diazotrophic Bacillus and recycle of spent bacterial biomass as biofertilizer inoculants for oil crops. Biocat Agricul Biotechnol. 2019;19:101112. Sun B, Bai Z, Bao L, Xue L, Zhang S, Wei Y, et al. Bacillus subtilis biofertilizer mitigating agricultural ammonia emission and shifting soil nitrogen cycling microbiomes. Environ Int. 2020;144:105989. Lalitha S, Nithyapriya S. Production of bacillibactin siderophore from soil bacteria, Bacillus subtilis: a bioinoculant enhances plant growth in Arachis hypogaea L. through elevated uptake of nutrients. In International Seminar on Promoting Local Resources for Sustainable Agriculture and Development (ISPLRSAD 2020) 2021; 71–82. Atlantis Press. Assie LK, Deleu M, Arnaud L, Paquot M, Thonart P, Ch G, Haubruge E. Insecticide activity of surfactins and iturins from a biopesticide Bacillus subtilis Cohn (S499 strain). Mededelingen (Rijksuniversiteit te Gent Fakulteit van de Landbouwkundige en Toegepaste Biologische Wetenschappen. 2002;67(3):647–55. Ayer KM, Strickland DA, Choi M, Cox KD. Optimizing the integration of a biopesticide (Bacillus subtilis QST 713) with a single-site fungicide (benzovindiflupyr) to reduce reliance on synthetic multisite fungicides (captan and mancozeb) for management of apple scab. Plant Dis. 2021;105(11):3545–53. Sagar A, Yadav SS, Sayyed RZ, Sharma S, Ramteke PW. Bacillus subtilis: a multifarious plant growth promoter, biocontrol agent, and bioalleviator of abiotic stress. In Bacilli in Agrobiotechnology: Plant Stress Tolerance, Bioremediation, and Bioprospecting 2022;561–580. Cham: Springer International Publishing. Chavarria-Quicaño E, Contreras-Jácquez V, Carrillo-Fasio A, De la Torre-González F, Asaff-Torres A. Native Bacillus paralicheniformis isolate as a potential agent for phytopathogenic nematodes control. Front Microbiol. 2023;14:1213306. Djokic L, Stankovic N, Galic I, Moric I, Radakovic N, Šegan S, et al. Novel quorum quenching YtnP lactonase from Bacillus paralicheniformis reduces Pseudomonas aeruginosa virulence and increases antibiotic efficacy in vivo. Front Microbiol. 2022;13:906312.