Phân tích toàn diện các thẻ trình tự biểu hiện từ củ cải (Raphanus spp.) nuôi trồng và hoang dã

Di Shen1, Honghe Sun2, Mingyun Huang2, Yi Zheng2, Qin Yang1, Xixiang Li1, Zhangjun Fei2
1Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
2Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA

Tóm tắt

Tóm tắt Đề tài

Củ cải (Raphanus sativus L., 2n = 2× = 18) là một loại cây rau quả có giá trị kinh tế lớn trên toàn cầu. Một bộ sưu tập lớn các thẻ trình tự biểu hiện (ESTs) từ củ cải đã được tạo ra nhưng vẫn còn nhiều điểm chưa được khai thác.

Kết quả

Trong nghiên cứu này, khoảng 315.000 ESTs được lấy từ 22 thư viện cDNA của giống Raphanus từ 18 kiểu gen khác nhau đã được phân tích nhằm mục đích phát hiện gen và dấu ấn, cũng như đánh giá sự sao chép toàn bộ gen quy mô lớn và mối quan hệ phát sinh chủng loại giữa các loài Raphanus. Các ESTs đã được tổng hợp thành 85.083 unigene, trong đó 90%, 65%, 89% và 89% có các trình tự đồng hóa trong các cơ sở dữ liệu protein GenBank nr, SwissProt, TrEMBL và Arabidopsis, tương ứng. Tổng cộng có 66.194 (78%) có thể được gán ít nhất một thuật ngữ ontogeny gene (GO). Phân tích so sánh xác định 5.595 họ gen độc nhất cho củ cải có liên quan mật thiết đến các gen liên quan đến chuyển hóa phân tử nhỏ, cũng như 12.899 riêng cho họ Cải mang lại sự phong phú với các gen liên quan đến sự hình thành thể dầu hạt và phản ứng với phytohormones. Phân tích cũng cho thấy rằng sự phân kỳ giữa củ cải và Brassica rapa xảy ra khoảng 8.9-14.9 triệu năm trước (MYA), sau một sự kiện sao chép toàn bộ bộ gen (12.8-21.4 MYA) trong tổ tiên chung của chúng. Một sự kiện sao chép toàn bộ bộ gen bổ sung ở củ cải xảy ra vào khoảng 5.1-8.4 MYA, sau khi nó phân kỳ khỏi B. rapa. Tổng cộng có 13.570 đoạn lặp chuỗi đơn giản (SSRs) và 28.758 biến thể đơn nucleotide chất lượng cao (SNPs) cũng đã được xác định. Sử dụng một tập hợp con của SNPs, các mối quan hệ phát sinh chủng loại của tám giống khác nhau của Raphanus được suy diễn.

Từ khóa

#Củ cải #Raphanus #thẻ trình tự biểu hiện #SSR #SNP #phát sinh chủng loại #tiến hóa bộ gen

Tài liệu tham khảo

Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, Merril CR, Wu A, Olde B, Moreno RF: Complementary DNA sequencing: expressed sequence tags and human genome project. Science. 1992, 252: 1651-1656.

Yang H, Kaur N, Kiriakopolos S, McCormick S: EST generation and analyses towards identifying female gametophyte-specific genes in Zea mays L. Planta. 2006, 224: 1004-1014. 10.1007/s00425-006-0283-3.

Eswaran N, Parameswaran S, Anantharaman B, Kumar GR, Sathram B, Johnson TS: Generation of an expressed sequence tag (EST) library from salt-stressed roots of Jatrophacurcas for identification of abiotic stress-responsive genes. Plant Biol. 2012, 14: 428-437. 10.1111/j.1438-8677.2011.00529.x.

Shi T, Huang H, Barker MS: Ancient genome duplications during the evolution of kiwifruit (Actinidia) and related Ericales. Ann Bot. 2010, 106: 497-504. 10.1093/aob/mcq129.

Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang H, Soltis PS: Ancestral polyploidy in seed plants and angiosperms. Nature. 2011, 473: 97-100. 10.1038/nature09916.

Chatzopoulou FM, Makris AM, Argiriou A, Degenhardt J, Kanellis AK: EST analysis and annotation of transcripts derived from a trichome-specific cDNA library from Salvia fruticosa. Plant Cell Rep. 2010, 29: 523-534. 10.1007/s00299-010-0841-9.

Büchel K, McDowell E, Nelson W, Descour A, Gershenzon J, Hilker M, Soderlund C, Gang DR, Fenning T, Meiners T: An elm EST database for identifying leaf beetle egg-induced defense genes. BMC Genomics. 2012, 13: 242-10.1186/1471-2164-13-242.

Budahn H, Peterka H, Mousa MA, Ding Y, Zhang S, Li J: Molecular mapping in oil radish (Raphanus sativus L.) and QTL analysis of resistance against beet cyst nematode (Heterodera schachtii). Theor Appl Genet. 2009, 118: 775-782. 10.1007/s00122-008-0937-6.

Xu L, Wang L, Gong Y, Dai W, Wang Y, Zhu X, Wen T, Liu L: Genetic linkage map construction and QTL mapping of cadmium accumulation in radish (Raphanus sativus L.). Theor Appl Genet. 2012, 125: 659-670. 10.1007/s00122-012-1858-y.

Shirasawa K, Shiokai S, Yamaguchi M, Kishitani S, Nishio T: Dot-blot-SNP analysis for practical plant breeding and cultivar identification in rice. Theor Appl Genet. 2006, 113: 147-155. 10.1007/s00122-006-0281-7.

Li F, Hasegawa Y, Saito M, Shirasawa S, Fukushima A, Ito T, Fujii H, Kishitani S, Kitashiba H, Nishio T: Extensive chromosome homoeology among Brassiceae species were revealed by comparative genetic mapping with high-density EST-based SNP markers in radish (Raphanus sativus L.). DNA Res. 2011, 18: 401-411. 10.1093/dnares/dsr027.

Bourret V, Kent MP, Primmer CR, Vasemägi A, Karlsson S, Hindar K, McGinnity P, Verspoor E, Bernatchez L, Lien S: SNP-array reveals genome-wide patterns of geographical and potential adaptive divergence across the natural range of Atlantic salmon (Salmosalar). Mol Ecol. 2012, 22: 532-551.

Wang S, Wang X, He Q, Liu X, Xu W, Li L, Gao J, Wang F: Transcriptome analysis of the roots at early and late seedling stages using Illumina paired-end sequencing and development of EST-SSR markers in radish. Plant Cell Rep. 2012, 31: 1437-1447. 10.1007/s00299-012-1259-3.

Anithakumari AM, Tang J, Van Eck HJ, Visser RG, Leunissen JA, Vosman B, van der Linden CG: A pipeline for high throughput detection and mapping of SNPs from EST databases. Mol Breed. 2010, 26: 65-75. 10.1007/s11032-009-9377-5.

Ersoz ES, Wright MH, Pangilinan JL, Sheehan MJ, Tobias C, Casler MD, Buckler ES, Costich DE: SNP discovery with EST and NextGen sequencing in switchgrass (Panicum virgatum L.). PLoS One. 2012, 7: e44112-10.1371/journal.pone.0044112.

Herbst ST: Barron’s Cooking Guide. The new food lover’s companion: comprehensive definitions of nearly 6,000 food, drink, and culinary terms. 2001, Hauppauge, NY: Barron’s Educational Series

Zohary D, Hopf M: Domestication of plants in the old world. 2000, Oxford: University Press, 3

Lewis-Jones LJ, Thorpe JP, Wallis GP: Genetic divergence in four species of the genus Raphanus: implications for the ancestry of the domestic radish R. sativus. Biol J Linn Soc. 1982, 18: 35-48. 10.1111/j.1095-8312.1982.tb02032.x.

Kitamura S: Cultivars of radish and their change. Japanese radish. Edited by: Nishiyama I. 1958, Tokyo: Japan Society for the Promotion of Science, 1-19.

Kaneko Y, Kimizuka-Takagi C, Bang SW, Matsuzawa Y: Radish. Genome mapping and molecular breeding in plants. Edited by: Kole C. 2007, New York: Springer, 141-160.

Wang Y, Xu L, Chen Y, Shen H, Gong Y, Limera C, Liu L: Transcriptome profiling of radish (Raphanus sativus L.) root and identification of genes involved in response to lead (Pb) stress with next generation sequencing. PLoS One. 2013, 8: e66539-10.1371/journal.pone.0066539.

NCBI dbEST database.http://www.ncbi.nlm.nih.gov/dbEST/,

iTAK program.http://bioinfo.bti.cornell.edu/tool/itak,

Rood SB, Mandel R, Pharis RP: Endogenous gibberellins and shoot growth and development in Brassica napus. Plant Physiol. 1989, 89: 269-273. 10.1104/pp.89.1.269.

Rieu I, Ruiz-Rivero O, Fernandez-Garcia N, Griffiths J, Powers SJ, Gong F, Linhartova T, Eriksson S, Nilsson O, Thomas SG: The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J. 2008, 53: 488-504.

Tzen JTC, Huang AHC: Surface structure and properties of plant seed oil bodies. J Cell Biol. 1992, 117: 327-335. 10.1083/jcb.117.2.327.

He YQ, Wu Y: Oil body biogenesis during Brassica napus embryogenesis. J Integr Plant Biol. 2009, 51: 792-799. 10.1111/j.1744-7909.2009.00851.x.

Wang W, Gong Y, Liu L, Wang Y, Jing Z, Huang D, Wang L: Changes of sugar content and sucrose metabolizing enzyme activities during fleshy taproot development in radish (Raphanus sativus L.). Acta Hortic Sinica. 2007, 34: 1313-1316.

Lee T-H, Tang H, Wang X, Paterson AH: PGDD: a database of gene and genome duplication in plants. Nucleic Acids Res. 2013, 41: D1152-D1158. 10.1093/nar/gks1104.

Yang YW, Lai KN, Tai PY, Li WH: Rates of nucleotide substitution in angiosperm mitochondrial DNA sequences and dates of divergence between Brassica and other angiosperm lineages. J Mol Evol. 1999, 48: 597-604. 10.1007/PL00006502.

Koch M, Haubold B, Mitchell-Olds T: Molecular systematics of the Brassicaceae: evidence from coding plastidic matK and nuclear Chs sequences. Am J Bot. 2001, 88: 534-544. 10.2307/2657117.

Shirasawa K, Oyama M, Hirakawa H, Sato S, Tabata S, Fujioka T, Kimizuka-Takagi C, Sasamoto S, Watanabe A, Kato M: An EST-SSR linkage map of Raphanus sativus and comparative genomics of the Brassicaceae. DNA Res. 2011, 18: 221-232. 10.1093/dnares/dsr013.

Guo S, Liu J, Zheng Y, Huang M, Zhang H, Gong G, He H, Ren Y, Zhong S, Fei Z: Characterization of transcriptome dynamics during watermelon fruit development: sequencing, assembly, annotation and gene expression profiles. BMC Genomics. 2011, 12: 454-10.1186/1471-2164-12-454.

Shen D, Sun H, Huang M, Zheng Y, Li X, Fei Z: RadishBase: a database for genomics and genetics of radish. Plant Cell Physiol. 2013, 54: e3-10.1093/pcp/pcs176.

Nei M: Phylogenetic analysis in molecular evolutionary genetics. Annu Rev Genet. 1996, 30: 371-403. 10.1146/annurev.genet.30.1.371.

Tsuro M, Suwabe K, Kubo N, Matsumoto S, Hirai M: Construction of a molecular linkage map of radish (Raphanus sativus L.), based on AFLP and Brassica-SSR markers. Breed Sci. 2005, 55: 107-111. 10.1270/jsbbs.55.107.

Yamagishi H, Terachi T: Multiple origins of cultivated radishes as evidenced by a comparison of the structural variations in mitochondrial DNA of Raphanus. Genome. 2003, 46: 89-94. 10.1139/g02-110.

Yamane K, Lü N, Ohnishi O: Multiple origins and high genetic diversity of cultivated radish inferred from polymorphism in chloroplast simple sequence repeats. Breed Sci. 2009, 59: 55-65. 10.1270/jsbbs.59.55.

Lü N, Yamane K, Ohnishi O: Genetic diversity of cultivated and wild radish and phylogenetic relationships among Raphanus and Brassica species revealed by the analysis of trn K/mat K sequence. Breed Sci. 2008, 58: 15-22. 10.1270/jsbbs.58.15.

NCBI UniVec database.http://www.ncbi.nlm.nih.gov/VecScreen/UniVec.html,

SeqClean program.http://sourceforge.net/projects/seqclean/,

Zheng Y, Zhao L, Gao J, Fei Z: iAssembler: a package for de novo assembly of Roche-454/Sanger transcriptome sequences. BMC Bioinformatics. 2011, 12: 453-10.1186/1471-2105-12-453.

Plant specific GO slims.http://www.geneontology.org/GO.slims.shtml,

Li L, Stoeckert CJJ, Roos DS: OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 2003, 13: 2178-2189. 10.1101/gr.1224503.

Venn diagrams.http://bioinformatics.psb.ugent.be/webtools/Venn,

Boyle EI, Weng S, Gollub J, Jin H, Botstein D, Cherry JM, Sherlock G: GO: TermFinder-open source software for accessing gene ontology information and finding significantly enriched gene ontology terms associated with a list of genes. Bioinformatics. 2004, 20: 3710-3715. 10.1093/bioinformatics/bth456.

Iseli C, Jongeneel CV, Bucher P: ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc Int Conf Intell Syst Mol Biol. 1999, 138-148.

Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun JH, Bancroft I, Cheng F: The genome of the mesopolyploid crop species Brassica rapa. Nat Genet. 2011, 43: 1035-1039. 10.1038/ng.919.

Swarbreck D, Wilks C, Lamesch P, Berardini TZ, Garcia-Hernandez M, Foerster H, Li D, Meyer T, Muller R, Ploetz L: The arabidopsis information resource (TAIR): gene structure and function annotation. Nucleic Acids Res. 2008, 36: D1009-D1014.

Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, Senin P, Wang W, Ly BV, Lewis KL: The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature. 2008, 452: 991-996. 10.1038/nature06856.

Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32: 1792-1797. 10.1093/nar/gkh340.

Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T: trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009, 25: 1972-1973. 10.1093/bioinformatics/btp348.

Yang Z: PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007, 24: 1586-1591. 10.1093/molbev/msm088.

Wikström N, Savolainen V, Chase MW: Evolution of the angiosperms: calibrating the family tree. Proc Biol Sci. 2001, 268: 2211-2220. 10.1098/rspb.2001.1782.

Crepet WL, Nixon KC, Gandolfo MA: Fossil evidence and phylogeny: the age of major angiosperm clades based on mesofossil and macrofossil evidence from cretaceous deposits. Am J Bot. 2004, 91: 1666-1682. 10.3732/ajb.91.10.1666.

Salse J, Abrouk M, Bolot S, Guilhot N, Courcelle E, Faraut T, Waugh R, Close TJ, Messing J, Feuillet C: Reconstruction of monocotelydoneous proto-chromosomes reveals faster evolution in plants than in animals. Proc Natl Acad Sci USA. 2009, 106: 14908-14913. 10.1073/pnas.0902350106.

Murat F, Xu JH, Tannier E, Abrouk M, Guilhot N, Pont C, Messing J, Salse J: Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution. Genome Res. 2010, 20: 1545-1557. 10.1101/gr.109744.110.

MISA program.http://pgrc.ipk-gatersleben.de/misa,

Primer3 program.http://frodo.wi.mit.edu,

Clepet C, Joobeur T, Zheng Y, Jublot D, Huang M, Truniger V, Boualem A, Hernandez-Gonzalez ME, Dolcet-Sanjuan R: Analysis of expressed sequence tags generated from full-length enriched cDNA libraries of melon. BMC Genomics. 2011, 12: 252-10.1186/1471-2164-12-252.

Marth GT, Korf I, Yandell MD, Yeh RT, Gu Z, Zakeri H, Stitziel NO, Hillier L, Kwok PY, Gish WR: A general approach to single-nucleotide polymorphism discovery. Nat Genet. 1999, 23: 452-456. 10.1038/70570.

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011, 28: 2731-2739. 10.1093/molbev/msr121.