Comprehensive H<sub>2</sub>/O<sub>2</sub> kinetic model for high‐pressure combustion

International Journal of Chemical Kinetics - Tập 44 Số 7 - Trang 444-474 - 2012
Michael P. Burke1, Marcos Chaos2, Yiguang Ju1, Frederick L. Dryer1, Stephen J. Klippenstein3
1Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544
2Fire and Explosions Dynamics Group, Fire Hazards and Protection Area, FM Global Engineering and Research, Norwood, MA 02062
3Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439

Tóm tắt

AbstractAn updated H2/O2 kinetic model based on that of Li et al. (Int J Chem Kinet 36, 2004, 566–575) is presented and tested against a wide range of combustion targets. The primary motivations of the model revision are to incorporate recent improvements in rate constant treatment and resolve discrepancies between experimental data and predictions using recently published kinetic models in dilute, high‐pressure flames.Attempts are made to identify major remaining sources of uncertainties, in both the reaction rate parameters and the assumptions of the kinetic model, affecting predictions of relevant combustion behavior. With regard to model parameters, present uncertainties in the temperature and pressure dependence of rate constants for HO2 formation and consumption reactions are demonstrated to substantially affect predictive capabilities at high‐pressure, low‐temperature conditions. With regard to model assumptions, calculations are performed to investigate several reactions/processes that have not received much attention previously. Results from ab initio calculations and modeling studies imply that inclusion of H + HO2 = H2O + O in the kinetic model might be warranted, though further studies are necessary to ascertain its role in combustion modeling. In addition, it appears that characterization of nonlinear bath‐gas mixture rule behavior for H + O2(+ M) = HO2(+ M) in multicomponent bath gases might be necessary to predict high‐pressure flame speeds within ∼15%.The updated model is tested against all of the previous validation targets considered by Li et al. as well as new targets from a number of recent studies. Special attention is devoted to establishing a context for evaluating model performance against experimental data by careful consideration of uncertainties in measurements, initial conditions, and physical model assumptions. For example, ignition delay times in shock tubes are shown to be sensitive to potential impurity effects, which have been suggested to accelerate early radical pool growth in shock tube speciation studies. In addition, speciation predictions in burner‐stabilized flames are found to be more sensitive to uncertainties in experimental boundary conditions than to uncertainties in kinetics and transport. Predictions using the present model adequately reproduce previous validation targets and show substantially improved agreement against recent high‐pressure flame speed and shock tube speciation measurements. Comparisons of predictions of several other kinetic models with the experimental data for nearly the entire validation set used here are also provided in the Supporting Information. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 44: 444–474, 2012

Từ khóa


Tài liệu tham khảo

10.1016/0360-1285(84)90118-7

Richards G. A., 2009, Synthesis Gas Combustion: Fundamentals and Applications, 193

Chaos M., 2009, Synthesis Gas Combustion: Fundamentals and Applications, 29

10.1016/S0082-0784(00)80581-0

10.1021/ef060553g

10.1016/j.combustflame.2006.12.002

10.1016/j.combustflame.2007.06.013

10.1016/j.combustflame.2009.08.009

10.1016/j.proci.2010.05.021

10.1016/j.proci.2008.06.014

10.1002/kin.20180

10.1002/kin.20026

10.1016/j.proci.2004.08.252

10.1016/j.combustflame.2007.10.024

10.1016/j.proci.2006.07.193

10.1002/kin.20036

10.1016/j.combustflame.2005.10.004

Smith G. P.;Golden D. M.;Frenklach M.;Moriarty N. W.;Eiteneer B.;Goldenberg M.;Bowman C. T.;Hanson R. K.;Song S.;Gardiner W. C.Jr.;Lissianski V. V.;Qin Z.GRI‐MECH 3.0. Available athttp://www.me.berkeley.edu/gri_mech/ accessed 2009.

10.1016/j.combustflame.2010.10.002

10.1063/1.1748524

10.1063/1.459102

10.1039/b204364e

Burke M. P., 2011, Fall Eastern States Section Technical Meeting of the Combustion Institute, University of Connecticut, Storrs, 9

Wang H.;You X.;Joshi A. V.;Davis S. G.;Laskin A.;Egolfopoulos F. N.;Law C. K.USC Mech Version II. High‐Temperature Combustion Reaction Model of H2/CO/C1–C4Compounds. Available athttp://ignis.usc.edu/USC_Mech_II.htm; May 2007 accessed 2009.

10.1021/jp020229w

10.1016/S0082-0784(00)80542-1

10.1039/b010002l

10.1039/b404146a

10.1021/jp711800z

10.1063/1.2917201

10.1039/a908929b

10.1039/b804553d

10.1021/j100248a033

10.1021/jp065140v

Miller J. A. personal communication 2010.

10.1002/bbpc.19800840902

10.1063/1.447713

10.1021/j100464a019

10.1002/bbpc.19830870217

10.1002/bbpc.19830870218

10.1002/kin.20451

10.1016/j.proci.2010.05.101

10.1021/j100381a033

10.1021/j100338a058

10.1021/jp971416a

10.1002/aic.690321206

10.1002/(SICI)1097-4601(1999)31:2<113::AID-KIN5>3.0.CO;2-0

10.1246/bcsj.80.1901

10.1039/f19797500140

10.1039/f19747000635

10.1021/j100220a023

10.1021/j100404a040

10.1016/S0082-0784(00)80543-3

10.1063/1.479131

10.1063/1.462472

10.1063/1.471858

10.1021/jp0508608

10.1039/b515914h

Jasper A. W., 7th International Conference on Chemical Kinetics, Massachusetts Institute of Technology, 10

10.1021/j100472a001

10.1021/j100390a025

10.1021/j150651a006

10.1021/j100316a037

10.1021/j100445a001

10.1016/0009-2614(81)80329-6

10.1021/j150624a029

10.1002/bbpc.19820860704

10.1016/0009-2614(92)85478-S

10.1063/1.470235

10.1021/jp057461x

10.1021/jp100739t

10.1039/f29888400745

10.1016/S0082-0784(73)80015-3

Harding L. B.;Klippenstein S. J.unpublished.

10.1080/00102200801963011

10.1002/kin.20327

10.1016/j.proci.2006.08.057

10.1063/1.555908

10.1016/0009-2614(82)83297-1

10.1016/0009-2614(88)80407-X

10.1063/1.555759

10.1002/kin.20172

10.1021/jp991146r

10.1002/kin.550260402

10.1016/S0082-0784(06)80242-0

10.1016/S0082-0784(06)80241-9

10.1021/jp100204z

10.1021/j100214a035

10.1021/j100245a034

10.1021/jp014120k

10.1016/S0082-0784(88)80325-4

10.1021/jp907219f

10.1021/jp8110524

10.1016/j.combustflame.2010.08.013

Bahn G. S., 1968, Reaction Rate Compilation for the H–O–N System, 113

Kretschmer C. B.Aerojet‐General Corporation Report 1611 (AFOSR‐TR‐59‐62) May 1959 AD 217008.

Petersen H. L.;Kretschmer C. B.Aerojet‐General Corporation Report TN‐38 (AFOSR‐TN‐60‐1478) November 1960 AD 283044.

10.1021/jp9703622

10.1080/13647830500098431

10.1016/S1540-7489(02)80167-5

Middha P., 2002, 2002 Annual Meeting of American Institute of Chemical Engineers, 3

10.1103/PhysRevA.64.042722

10.1063/1.463956

10.1103/PhysRevA.62.062709

10.2514/2.6370

Kee R. J., 1986, Report SAND86‐8246

Lutz A. E., 1988, Report SAND‐87‐8248

10.1080/00102200600671898

10.1016/j.combustflame.2005.02.014

10.1016/j.fuproc.2008.05.021

10.1002/kin.20471

Kee R. J., 1985, Report SAND85‐8240

von Elbe G.;Lewis B. J Chem Phys1942 10 366–393.

10.1098/rspa.1951.0003

10.1039/tf9676301676

10.1016/0010-2180(88)90044-2

10.1016/S1540-7489(02)80149-3

10.1021/j100068a048

10.1021/j100038a033

10.1016/0010-2180(85)90019-7

10.1002/kin.20285

10.1016/0010-2180(77)90031-1

10.1016/0010-2180(73)90005-9

10.1063/1.1696266

10.1063/1.1744674

Petersen E. L., 1995, AIAA 95‐3113, 31st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit

10.1016/S0082-0784(06)80275-4

10.1016/S0010-2180(96)00151-4

10.1016/S0010-2180(00)00229-7

10.1016/S0894-1777(02)00243-1

10.1016/j.combustflame.2006.03.003

10.1016/j.ijhydene.2008.06.063

10.1016/j.ijhydene.2009.03.058

10.1016/j.combustflame.2009.01.013

10.1080/13647830802632192

10.1016/j.proci.2008.05.060

10.1016/j.combustflame.2009.04.004

10.1016/j.combustflame.2010.05.013

10.1016/j.combustflame.2010.09.001

10.1016/S0082-0784(06)80276-6

10.1016/0010-2180(91)90003-T

10.1016/S0082-0784(06)80776-9

10.1016/S0082-0784(06)80277-8

10.1524/zpch.2009.6049

10.1098/rspa.1970.0113

10.1007/BF01998452

10.1021/j100324a035