Phân Tích Già Hóa Toàn Diện của Pin Pouch Lithium-Ion Bị Giới Hạn Thể Tích với Anode Hợp Kim Silic Nồng Độ Cao

Energies - Tập 11 Số 11 - Trang 2948
Lysander De Sutter1, Gert Berckmans1, Mario Marinaro2, Jelle Smekens1, Yousef Firouz1, Margret Wohlfahrt‐Mehrens2, Joeri Van Mierlo1, Noshin Omar1
1ETEC Department & MOBI Research Group, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium—VUB-MOBI is a Core Lab Member of Flanders Make
2ZSW, Zentrum für Sonnenenergie- und Wasserstoff-Forschung BW, Helmholtzstraße 8, 89081, Ulm, Germany

Tóm tắt

Trong nghiên cứu này, hai mươi bốn pin pouch Li-ion dung lượng cao (1360 mAh) NMC622/Si-hợp kim với hàm lượng hợp kim silic cao (55%) đã được già hóa theo chu kỳ dưới bảy điều kiện chu kỳ khác nhau nhằm khảo sát ảnh hưởng của các yếu tố căng thẳng khác nhau đến tuổi thọ chu kỳ của các pin toàn phần sử dụng anode Si, trong đó có ảnh hưởng của nhiệt độ môi trường, Độ sâu xả (DoD) và dòng xả. Các pin được giới hạn về thể tích tại một áp lực ban đầu tối ưu để cải thiện tuổi thọ chu kỳ, khả năng năng lượng và công suất của chúng. Hơn nữa, thiết lập thử nghiệm đổi mới này cho phép đo áp lực phát triển như là kết quả của việc lithi hóa và phi lithi hóa lặp đi lặp lại trong suốt quá trình chu kỳ pin. Chiến dịch thử nghiệm phong phú này về các pin toàn phần sử dụng anode Si cho phép chúng tôi nghiên cứu và định lượng độc lập ảnh hưởng của các yếu tố căng thẳng khác nhau đến tuổi thọ chu kỳ của chúng lần đầu tiên, cũng như phát triển một mô hình suy giảm dung lượng mới dựa trên mối quan hệ tuyến tính quan sát được giữa khả năng giữ dung lượng và tổng công suất xả.

Từ khóa

#Pin Lithium-Ion #Anode Hợp Kim Silic #Tuổi Thọ Chu Kỳ #Nghiên Cứu Già Hóa #Dòng Xả

Tài liệu tham khảo

NOAA National Centers for Environmental Information (2018). State of the Climate: Global Climate Report for Annual 2017.

Feng, K., Li, M., Liu, W., Kashkooli, A.G., Xiao, X., and Cai, M. (2018). Silicon-Based Anodes for Lithium-Ion Batteries: From Fundamentals to Practical Applications. Small, 14.

Louli, 2017, Volume, Pressure and Thickness Evolution of Li-Ion Pouch Cells with Silicon-Composite Negative Electrodes, J. Electrochem. Soc., 164, 2689, 10.1149/2.1691712jes

Shen, 2017, Research progress on silicon/carbon composite anode materials for lithium-ion battery, J. Energy Chem., 27, 1067, 10.1016/j.jechem.2017.12.012

Edstr, 2016, In fluence of inactive electrode components on degradation phenomena in nano-Si electrodes for Li-ion batteries, J. Power Sour., 325, 513, 10.1016/j.jpowsour.2016.06.059

Radvanyi, 2014, Study and modeling of the Solid Electrolyte Interphase behavior on nano-silicon anodes by Electrochemical Impedance Spectroscopy, Electrochim. Acta, 137, 751, 10.1016/j.electacta.2014.06.069

Steinhauer, 2017, Solid Electrolyte Interphase Formation on Silicon and Lithium Titanate Anodes in Lithium-Ion Batteries, J. Appl. Electrochem., 47, 249, 10.1007/s10800-016-1032-3

Wetjen, 2017, Differentiating the Degradation Phenomena in Silicon-Graphite Electrodes for Lithium-Ion Batteries, J. Electrochem. Soc., 164, 2840, 10.1149/2.1921712jes

Ozanam, 2016, Silicon as anode material for Li-ion batteries, Mater. Sci. Eng. B, 213, 2, 10.1016/j.mseb.2016.04.016

Du, 2017, Si alloy/graphite coating design as anode for Li-ion batteries with high volumetric energy density, Electrochim. Acta, 254, 123, 10.1016/j.electacta.2017.09.087

Demirkan, 2015, Cycling performance of density modulated multilayer silicon thin film anodes in Li-ion batteries, J. Power Sour., 273, 52, 10.1016/j.jpowsour.2014.09.027

Ko, 2015, Challenges in Accommodating Volume Change of Si Anodes for Li-Ion Batteries, ChemElectroChem, 2, 1645, 10.1002/celc.201500254

Gustafsson, 2015, Improved Performance of the Silicon Anode for Li-Ion Batteries: Understanding the Surface Modification Mechanism of Fluoroethylene Carbonate as an Effective Electrolyte Additive, Chem. Mater., 27, 2591, 10.1021/acs.chemmater.5b00339

Zuo, 2017, Nano Energy Silicon based lithium-ion battery anodes: A chronicle perspective review, Nano Energy, 31, 113, 10.1016/j.nanoen.2016.11.013

Haruta, 2017, Temperature effects on SEI formation and cyclability of Si nano flake powder anode in the presence of SEI-forming additives, Electrochim. Acta, 224, 186, 10.1016/j.electacta.2016.12.071

Jung, R., Metzger, M., Haering, D., Solchenbach, S., Marino, C., Tsiouvaras, N., Stinner, C., and Gasteiger, H.A. (2016). Consumption of Fluoroethylene Carbonate (FEC) on Si-C Composite Electrodes for Li-Ion Batteries. J. Electrochem. Soc., 166.

Leung, 2014, Modeling Electrochemical Decomposition of Fluoroethylene Carbonate on Silicon Anode Surfaces in Lithium Ion Batteries, J. Electrochem. Soc., 161, 213, 10.1149/2.092401jes

Dupre, 2016, Multiprobe Study of the Solid Electrolyte Interphase on Silicon-Based Electrodes in Full-Cell Configuration, Chem. Mater., 28, 2557, 10.1021/acs.chemmater.5b04461

Delpuech, 2016, Mechanism of Silicon Electrode Aging upon Cycling in Full Lithium-Ion Batteries, ChemElectroChem, 9, 841

Chevrier, 2018, Design and Testing of Prelithiated Full Cells with High Silicon Content, J. Electrochem. Soc., 165, 1129, 10.1149/2.1161805jes

Berckmans, G., De Sutter, L., Kersys, A., Kriston, A., Marinaro, M., Kasper, M., Axmann, P., Smekens, J., Wohlfahrt-Mehrens, M., and Pfrang, A. (2018). Electrical Characterization and Micro X-ray Computed Tomography Analysis of Next-Generation Silicon Alloy Cells. World Electr. Veh. J., 9.

Kierzek, 2016, Factors influencing cycle-life of full Li-ion cell built from Si/C composite as anode and conventional cathodic material, Electrochim. Acta, 192, 475, 10.1016/j.electacta.2016.02.019

Lu, 2018, Calendar and Cycle Life of Lithium-Ion Batteries Containing Silicon Monoxide Anode, J. Electrochem. Soc., 165, 2179, 10.1149/2.0631810jes

Kalaga, 2018, Calendar-life versus cycle-life aging of lithium-ion cells with silicon-graphite composite electrodes, Electrochim. Acta, 280, 221, 10.1016/j.electacta.2018.05.101

Klett, 2016, Electrode Behavior RE-Visited: Monitoring Potential Windows, Capacity Loss, and Impedance Changes in Li1.03 (Ni0.5Co0.2Mn0.3) 0.97 O2/Silicon-Graphite Full Cells, J. Electrochem. Soc., 163, 875, 10.1149/2.0271606jes

Marinaro, 2017, High performance 1.2 Ah Si-alloy/GraphitejLiNi0.5Mn0.3Co0.2O2 prototype Li-ion battery, J. Power Sour., 357, 188, 10.1016/j.jpowsour.2017.05.010

Gabrielli, 2017, A new approach for compensating the irreversible capacity loss of high- A new approach for compensating the irreversible capacity loss of high-energy Si/C j LiNi0.5Mn1.5O4 lithium-ion batteries, J. Power Sour., 351, 35, 10.1016/j.jpowsour.2017.03.051

(2018, July 15). Electrically Propelled Road Vehicles—Test Specification for Lithium-Ion Traction Battery Packs and Systems—Part 1: High-Power Applications. ISO 12405-2. Available online: https://www.iso.org/standard/55854.html.

(2018, July 15). Electrically Propelled Road Vehicles—Test Specification for Lithium-Ion Traction Battery Packs and Systems—Part 2: High Energy Application. ISO 12405-1. Available online: https://www.iso.org/standard/51414.html.

(2018, July 15). Secondary Lithium-Ion Cells for the Propulsion of Electric Road Vehicles—Part 1: Performance Testing. IEC 62660-1. Available online: https://webstore.iec.ch/publication/7331.

(2018, July 15). Secondary Batteries for the Propulsion of Electric Road Vehicles—Part 2: Dynamic Discharge Performance Test and Dynamic Endurance Test. IEC 61982-2. Available online: https://webstore.iec.ch/publication/20204.

Hoog, 2017, Combined cycling and calendar capacity fade modeling of a Nickel-Manganese-Cobalt Oxide Cell with real-life profile validation, Appl. Energy, 200, 47, 10.1016/j.apenergy.2017.05.018

Waldmann, 2014, Temperature dependent ageing mechanisms in Lithium-ion batteries e A Post-Mortem study, J. Power Sour., 262, 129, 10.1016/j.jpowsour.2014.03.112

Jalkanen, 2015, Cycle aging of commercial NMC/graphite pouch cells at different temperatures, Appl. Energy, 154, 160, 10.1016/j.apenergy.2015.04.110

Wang, 2011, Cycle-life model for graphite-LiFePO4 cells, J. Power Sour., 196, 3942, 10.1016/j.jpowsour.2010.11.134

Omar, 2014, Lithium iron phosphate based battery—Assessment of the aging parameters and development of cycle life model, Appl. Energy, 113, 1575, 10.1016/j.apenergy.2013.09.003

Klett, 2017, Layered Oxide, Graphite and Silicon-Graphite Electrodes for Lithium-Ion Cells: Effect of Electrolyte Composition and Cycling Windows, J. Electrochem. Soc., 164, 6095, 10.1149/2.0131701jes

Deshpande, 2012, Battery Cycle Life Prediction with Coupled Chemical Degradation and Fatigue Mechanics, J. Electrochem. Soc., 159, 1730, 10.1149/2.049210jes

Sun, 2017, Changes of Degradation Mechanisms of LiFePO4/Graphite Batteries Cycled at Different Ambient Temperatures, Electrochim. Acta, 237, 248, 10.1016/j.electacta.2017.03.158

Leng, F., Tan, C.M., and Pecht, M. (2015). Effect of Temperature on the Aging rate of Li Ion Battery Operating above Room Temperature. Sci. Rep., 1–12.

Jin, 2017, Challenges and Recent Progress in the Development of Si Anodes for Lithium-Ion Battery, Adv. Energy Mater., 7, 1, 10.1002/aenm.201700715

Sethuraman, 2012, Real-time stress measurements in lithium-ion battery negative-electrodes, J. Power Sour., 206, 334, 10.1016/j.jpowsour.2012.01.036

Bucci, G., Swamy, T., Bishop, S., Sheldon, B.W., Chiang, Y.m., and Carter, W.C. (2017). The Effect of Stress on Battery-Electrode Capacity. J. Electrochem. Soc., 166.

Cheng, X., and Pecht, M. (2017). In Situ Stress Measurement Techniques on Li-ion Battery Electrodes: A Review. Energies, 10.

Glazier, 2017, An Analysis of Artificial and Natural Graphite in Lithium Ion Pouch Cells Using Ultra-High Precision Coulometry, Isothermal Microcalorimetry, Gas Evolution, Long Term Cycling and Pressure Measurements, J. Electrochem. Soc., 164, 3545, 10.1149/2.0421714jes

Cannarella, 2014, State of health and charge measurements in lithium-ion batteries using mechanical stress, J. Power Sour., 269, 7, 10.1016/j.jpowsour.2014.07.003

Dai, 2017, State of charge estimation for lithium-ion pouch batteries based on stress measurement, Energy, 129, 16, 10.1016/j.energy.2017.04.099

Cui, Y., Du, C., Yin, G., Gao, Y., Zhang, L., and Guan, T. (2015). Multi-Stress Factor Model for Cycle Lifetime Prediction of Lithium Ion Batteries with Shallow-Depth Discharge. J. Power Sour.

Hannan, 2017, A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations, Renew. Sustain. Energy Rev., 78, 834, 10.1016/j.rser.2017.05.001