Composing Group-Level Constructs From Individual-Level Survey Data

Organizational Research Methods - Tập 12 Số 2 - Trang 368-392 - 2009
Heleen van Mierlo1, Jeroen K. Vermunt2, Christel G. Rutte3,3
1Erasmus University Rotterdam and Radboud University#R#Nijmegen,
2Tilburg University,
3Eindhoven, University of Technology

Tóm tắt

Group-level constructs are often derived from individual-level data. This procedure requires a composition model, specifying how the lower level data can be combined to compose the higher level construct. Two common composition methods are direct consensus composition, where items refer to the individual, and referent-shift consensus composition, where items refer to the group. The use and selection of composition methods is subject to a number of problems, calling for more systematic work on the empirical properties of and distinction between constructs composed by different methods. To facilitate and encourage such work, the authors present a methodological framework for addressing the distinction between and the baseline psychometric quality of composed group constructs, illustrated by an empirical example in the group job-design domain. The framework primarily represents a developmental tool with applications in multilevel theory building and scale construction, but also in meta-analysis or secondary analysis, and more general, the validation of group constructs.

Từ khóa


Tài liệu tham khảo

Bliese, P.D. (2000). Within-group agreement, non-independence, and reliability: Implications for data aggregation and analysis. In K. J. Klein & S. W. J. Kozlowski (Eds.), Multilevel theory, research, and methods in organizations (pp. 349-381). San Francisco: Jossey-Bass.

Bryk, A.S., 1982, Hierarchical linear models

10.1111/j.1744-6570.1996.tb01806.x

10.1037/0021-9010.83.2.234

10.1037/1082-989X.6.3.297

Cohen, J., 1988, Statistical power analysis for the behavioral sciences, 2

Cordery, J.L. (1996). Autonomous work groups and quality circles. In M. West (Ed.), Handbook of work-group psychology (pp. 225-246). Chichester, UK: Wiley.

10.1037/1082-989X.12.1.45

Dansereau, F., 1984, Theory testing in organizational behavior: The variant approach

10.1177/1059601106291131

10.1016/j.leaqua.2006.07.002

10.1037/0021-9010.88.2.356

10.1037/0021-9010.85.6.860

10.1037/1082-989X.4.3.272

10.1177/1059601100251005

10.1037/h0076546

Hackman, J.R., 1980, Work redesign

10.1177/1094428104263675

10.1002/(SICI)1099-1379(199711)18:6<667::AID-JOB874>3.0.CO;2-T

10.1037/0021-9010.67.2.219

10.1037/0021-9010.69.1.85

10.1002/job.4030110302

Kenny, D.A., 1998, Website

10.2307/256874

10.1111/j.1744-6570.2001.tb00226.x

10.1037/0021-9010.86.1.3

10.5465/amr.1994.9410210745

10.1177/109442810033001

10.1177/1094428105284919

10.1177/0149206304272190

10.1177/01466219922031257

10.1037/1082-989X.1.1.30

10.5465/amr.1983.4284651

10.1177/0049124194022003006

Nunnally, J.C., 1978, Psychometric theory, 2

10.1348/096317901167460

Quigley, N.R., 2007, Organizational Research Methods

10.2307/2087176

Rousseau, D. (1985). Issues of level in organizational research: Multi-level and cross-level perspectives. In L. Cummings & B. Saw (Eds.), Research in organizational behavior (vol. 7, pp. 1-37). Greenwich, CT: JAI.

10.2307/255594

10.1037/0033-2909.86.2.420

Snijders, T.A.B., 1999, Multilevel analysis: An introduction to basic and advanced multilevel modeling

10.1177/1059601103257989

10.1080/02678370210166399

10.1207/s15327906mbr2501_1

10.1177/0013164490504003

Yammarino, F.J., 2002, Leadership, 23

10.1016/j.leaqua.2005.09.002