Complexity theory of three-dimensional manifolds

С. В. Матвеев1
1UNESCO, Paris, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Matveev S. V.: Special spines of piecewise linear manifolds, Mat. Sb. 92, No. 2 (1973), 282–293. (English transl.: Math. USSR-Sb. 21 (1973).)

Matveev S. V.: A method for presenting 3-manifolds, Vestnik MGU, 30, No. 3 (1975), 11–20 (English transl.: Moscow Univ. Math. Bull. 30 (1975).)

Matveev S. V.: Transformations of special spines and the Zeeman conjecture, Izv. Akad. Nauk SSSR. 51, No. 5 (1987), 1104–1116. (English transl.: Math. USSR-Izv. 31(2) (1988), 423–434.)

Matveev S. V.: Complexity theory of 3-dimensional manifolds, Kiev, 1988, Acad. Sc. Ukr. SSSR. Math. Institute, 88–13.

Matveev S. V. and Fomenko A. T.: Morse type theory for integrable systems with tame integrals, Mat. Zametki 43, No. 5, (1988) 663–671.

Matveev S. V. and Fomenko A. T.: Isoenergetic surfaces of integrable systems, listing three dimensional manifolds in order of increasing complexity and volume computation of closed hyperbolic manifolds, Uspekhi Mat. Nauk 43, No. 1 (1988), 5–22. (English transl. Russian Math. Surveys 43 (1988), 3–24.)

Matveev S. V., Fomenko A. T., and Sharko V. V.: Round Morse functions and isoenergetic surfaces of integrable Hamiltonian systems, Mat. Sb. 135, No. 3 (1988), 325–345. (English transl.: Math. USSR-Sb. 63(2) (1989), 319–336.)

Matveev S. V. and Savvateev V. V.: Three-dimensional manifolds, possessing simple special spines, Colloq. Math. 32 (1974), 83–97 (Russian).

Rourke, C. and Sanderson, B.: Introduction to Piecewise Linear Topology.

Schubert, H.: Algorithm for the decomposition of links into simple summands.

Fomenko A. T.: The topology of surfaces having constant energy in integrable Hamiltonian systems and obstructions to integrability. Izv. Akad. Nauk SSSR. 50, No. 6 (1986), 1276–1307. (English transl.: Math. USSR-Izv. 29 (1987).)

Adams S. S.: Hyperbolic structures on link complements. Preprint, Univ. of Wisconsin, Madison, 1983.

Casler B. G.: An embedding theorem for connected 3-manifolds with boundary, Proc. Amer. Math. Soc. 16 (1965), 559–566.

Gillman D. and Laszlo P.: A computer search for contractible 3-manifolds, Topology Appl. 16 (1983), 33–41.

Haken W.: Theorie der Normalflächen. Ein Isotopiekriterium für den Kreisknoten, Acta. Math. 105 (1961), 245–375.

Ikeda H.: Acyclic fake surfaces are spines of 3-manifolds Osaka J. Math. 9 (1972), 391–408.

Ikeda H.: Contractible 3-manifolds admitting normal spines with maximal elements, Kobe J. Math. 1 (1984), 57–66.

Ikeda H. and Yoshinobu I.: Invitation to DS-diagrams, Kobe J. Math. 2 (1985), 169–186.

Milnor J.: Groups which act on S nwithout fixed points, Amer. J. Math. 79 (1967), 623–630.

Morgan J. W.: Non-singular Morse-Smale flows on 3-dimensional manifolds, Topology 18 (1979), 41–53.

Thurston, W. P.: The geometry and topology of 3-manifolds, Preprint, 1981.

Thurston W. P.: Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. 6 (1982), 357–381.

Waldhausen F.: Eine Klasse von 3-Mannigfaltigkeiten, Invent. Math. 3 (1967), 308–333, 4 (1968), 88–117.

Weeks, J. R.: Hyperbolic structures on Three-Manifolds, dissertation, Princeton, 1985.

Wright P.: Formal 3-deformations of 2-polyhedra, Proc. Amer. Math. Soc. 37 (1973), 305–308.

Zeeman E. C.: On the dunce hat, Topology 2 (1963), 341–358.

Zukowski T., Przytycki J. H., and Betley S.: Hyperbolic structures on Dehn filling of some punctured torus bundles over S 1, Kobe J. Math. 3 (1986) 117–147.