Complexity of dopamine metabolism

Cell Communication and Signaling - Tập 11 Số 1 - 2013
Johannes Meiser1, Daniel Weindl1, Karsten Hiller1
1Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, Esch-Belval, L-4362, Luxembourg

Tóm tắt

Abstract

Parkinson’s disease (PD) coincides with a dramatic loss of dopaminergic neurons within thesubstantia nigra. A key player in the loss of dopaminergic neurons is oxidative stress. Dopamine (DA) metabolism itself is strongly linked to oxidative stress as its degradation generates reactive oxygen species (ROS) and DA oxidation can lead to endogenous neurotoxins whereas some DA derivatives show antioxidative effects. Therefore, DA metabolism is of special importance for neuronal redox-homeostasis and viability.

In this review we highlight different aspects of dopamine metabolism in the context of PD and neurodegeneration. Since most reviews focus only on single aspects of the DA system, we will give a broader overview by looking at DA biosynthesis, sequestration, degradation and oxidation chemistry at the metabolic level, as well as at the transcriptional, translational and posttranslational regulation of all enzymes involved. This is followed by a short overview of cellular models currently used in PD research. Finally, we will address the topic from a medical point of view which directly aims to encounter PD.

Từ khóa


Tài liệu tham khảo

Fitzgerald JC, Plun-Favreau H: Emerging pathways in genetic Parkinson’s disease: autosomal-recessive genes in Parkinson’s disease–a common pathway?. FEBS J. 2008, 275 (23): 5758-5766.

Kim SW, Ko HS, Dawson VL, Dawson TM: Recent advances in our understanding of Parkinson’s disease. Drug Discov Today: Dis Mech. 2005, 2 (4): 427-433.

Purdon AD, Rosenberger TA, Shetty HU, Rapoport SI: Energy consumption by phospholipid metabolism in mammalian brain. Neurochem Res. 2002, 27 (12): 1641-1647.

Dexter DT, Carter CJ, Wells FR, Javoy-Agid F, Agid Y, Lees A, Jenner P, Marsden CD: Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem. 1989, 52 (2): 381-389.

Crown SB, Antoniewicz MR: Parallel labeling experiments and metabolic flux analysis: Past, present and future methodologies. Metab Eng. 2012, 16C: 21-32.

Antoniewicz MR, Kelleher JK, Stephanopoulos G: Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metab Eng. 2007, 9: 68-86.

Hiller K, Metallo C, Stephanopoulos G: Elucidation of cellular metabolism via metabolomics and stable-isotope assisted metabolomics. Curr Pharm Biotechnol. 2011, 12 (7): 1075-1086.

Hiller K, Hangebrauk J, Jäger C, Spura J, Schreiber K, Schomburg D: MetaboliteDetector: comprehensive analysis tool for targeted and nontargeted GC/MS based metabolome analysis. Anal Chem. 2009, 81 (9): 3429-3439.

Hiller K, Metallo CM: Profiling metabolic networks to study cancer metabolism. Curr Opin Biotechnol. 2013, 24: 60-68.

Christofk HR, Heiden MGV, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC: The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 2008, 452 (7184): 230-233.

Mazurek S, Boschek CB, Hugo F, Eigenbrodt E: Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol. 2005, 15 (4): 300-308.

Mannich C, Jacobsohn W: ÃIJber Oxyphenyl-alkylamine und Dioxyphenyl-alkylamine. Berichte der deutschen chemischen Gesellschaft. 1910, 43: 189-197.

Barger G, Ewins AJ: Some phenolic derivatives of β-phenylethylamine. J Chem So. 1910, 97: 2253-2261.

Schmalfuss H, Heider A: Tyramin und Oxytyramin, blutdrucksteigernde Schwarzvorstufen des Besenginsters Sarothamnus scoparius WIMM. Biochem Zeitschr. 1931, 236: 226-230.

Blaschko H: The activity of l(-)-dopa decarboxylase. J Physiol. 1942, 101 (3): 337-349.

Schümann H: Nachweis von Oxytyramin (Dopamin) in sympathischen Nerven und Ganglien. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1956, 227 (6): 566-573.

Schümann HJ, Heller I: [On the hydroxytyramine content of organs]. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1959, 236: 474-482.

Cottrell GA: Occurrence of dopamine and noradrenaline in the nervous tissue of some invertebrate species. Br J Pharmacol Chemother. 1967, 29: 63-69.

Hornykiewicz O: Dopamine miracle: from brain homogenate to dopamine replacement. Mov Disord. 2002, 17 (3): 501-508.

Carlsson A: Nobel Lectures. A Half-Century of Neurotransmitter Research: Impact on Neurology and Psychiatry. Edited by: Jörnvall H, Jörnvall H . 2003, Singapore: World Scientific Publishing Co., 303-303.

Kebabian JW, Petzold GL, Greengard P: Dopamine-sensitive adenylate cyclase in caudate nucleus of rat brain, and its similarity to the “dopamine receptor”. Proc Natl Acad Sci USA. 1972, 69 (8): 2145-2149.

Foundation TN: The nobel prize in physiology or medicine 2000 — Award ceremony speech. 2000, [http://www.nobelprize.org/nobel\_prizes/medicine/laureates/2000/presentation-speech.html]

Ehringer H, Hornykiewicz O: Verteilung von Noradrenalin und Dopamin (3-Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems. Klin Wochenschr. 1960, 38 (24): 1236-1239.

Birkmayer W, Hornykiewicz O: Der L-3,4-Dioxyphenylalanin (= DOPA)-Effekt bei der Parkinson-Akinese. Wien Klin Wochenschr. 1961, 73 (45): 787-788.

Heinz A, Schlagenhauf F: Dopaminergic dysfunction in schizophrenia: salience attribution revisited. Schizophr Bull. 2010, 36 (3): 472-485.

Breier AF, Malhotra AK, Su TP, Pinals DA, Elman I, Adler CM, Lafargue RT, Clifton A, Pickar D: Clozapine and risperidone in chronic schizophrenia: effects on symptoms, parkinsonian side effects, and neuroendocrine response. Am J Psychiatry. 1999, 156 (2): 294-298.

Tripp G, Wickens J: Reinforcement, dopamine and rodent models in drug development for ADHD. Neurotherapeutics. 2012, 9 (3): 622-634.

Segawa M: Hereditary progressive dystonia with marked diurnal fluctuation. Brain Dev. 2011, 33 (3): 195-201.

Eisenhofer G, Aneman A, Friberg P, Hooper D, Fåndriks L, Lonroth H, Hunyady B, Mezey E: Substantial production of dopamine in the human gastrointestinal tract. J Clin Endocrinol Metab. 1997, 82 (11): 3864-3871.

Blascko H: The specific action of L-dopa decarboxylase. J Physiol (Lond). 1939, 96 (50): 50-51.

Hiroi T, Imaoka S, Funae Y: Dopamine formation from tyramine by CYP2D6. Biochem Biophys Res Commun. 1998, 249 (3): 838-843.

Bromek E, Haduch A, Gołembiowska K, Daniel WA: Cytochrome P450 mediates dopamine formation in the brain in vivo. J Neurochem. 2011, 118 (5): 806-815.

Sánchez-Ferrer A, Rodríguez-López JN, García-Carmona F, García-Cánovas F: Tyrosinase: a comprehensive review of its mechanism. Biochim Biophys Acta. 1995, 1247: 1-11.

Rios M, Habecker B, Sasaoka T, Eisenhofer G, Tian H, Landis S, Chikaraishi D, Roffler-Tarlov S: Catecholamine synthesis is mediated by tyrosinase in the absence of tyrosine hydroxylase. J Neurosci. 1999, 19 (9): 3519-3526.

Chaudhry FA, Edwards RH, Fonnum F: Vesicular neurotransmitter transporters as targets for endogenous and exogenous toxic substances. Annu Rev Pharmacol Toxicol. 2008, 48: 277-301.

Miesenböck G, De Angelis DA, Rothman JE: Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature. 1998, 394 (6689): 192-195.

Vergo S, Johansen JL, Leist M, Lotharius J: Vesicular monoamine transporter 2 regulates the sensitivity of rat dopaminergic neurons to disturbed cytosolic dopamine levels. Brain Res. 2007, 1185: 18-32.

Cartier EA, Parra LA, Baust TB, Quiroz M, Salazar G, Faundez V, Egaña L, Torres GE: A biochemical and functional protein complex involving dopamine synthesis and transport into synaptic vesicles. J Biol Chem. 2010, 285 (3): 1957-1966.

Sulzer D, Rayport S: Amphetamine and other psychostimulants reduce pH gradients in midbrain dopaminergic neurons and chromaffin granules: a mechanism of action. Neuron. 1990, 5 (6): 797-808.

Fitzpatrick PF: Tetrahydropterin-dependent amino acid hydroxylases. Annu Rev Biochem. 1999, 68: 355-381.

Fitzpatrick PF: Mechanism of aromatic amino acid hydroxylation. Biochemistry (Mosc). 2003, 42 (48): 14083-14091.

Nagatsu T, Levitt M, Udenfriend S: Tyrosine Hydroxylase. The Initial Step In Norepinephrine Biosynthesis. J Biol Chem. 1964, 239: 2910-2917.

Daubner SC, Le T, Wang S: Tyrosine Hydroxylase and Regulation of Dopamine Synthesis. Arch Biochem Biophys. 2011, 508: 1-12.

Dunkley PR, Bobrovskaya L, Graham ME, Nagy-felsobuki EIV, Dickson PW: Tyrosine hydroxylase phosphorylation : regulation and consequences. J Neurochem. 2004, 91 (5): 1025-1043.

Kobayashi K, Kaneda N: Structure of the human tyrosine hydroxylase gene: alternative splicing from a single gene accounts for generation of four mRNA types. J Biochem (Tokyo). 1988, 103 (6): 907-912.

Grima B, Lamouroux A, Boni C, Julien JF, Javoy-Agid F, Mallet J: A single human gene encoding multiple tyrosine hydroxylases with different predicted functional characteristics. Nature. 1987, 326 (6114): 707-711.

Alterio J, Ravassard P, Haavik J, Caer JpL, Biguet NF, Waksman G, Mallet J: Human Tyrosine Hydroxylase Isoforms. J Biol Chem. 1998, 273 (17): 10196-10201.

Lewis D, Melchitzky D, Haycock J: Four isoforms of tyrosine hydroxylase are expressed in human brain. Neuroscience. 1993, 54 (2): 477-492.

Haycock JW, Ahn NG, Cobb MH, Krebs EG: ERK1 and ERK2, two microtubule-associated protein 2 kinases, mediate the phosphorylation of tyrosine hydroxylase at serine-31 in situ. Proc Natl Acad Sci USA. 1992, 89 (6): 2365-2369.

Haycock J: Species differences in the expression of multiple tyrosine hydroxylase protein isoforms. J Neurochem. 2002, 81 (5): 947-953.

Goodwill KE, Sabatier C, Stevens RC: Crystal structure of tyrosine hydroxylase with bound cofactor analogue and iron at 2.3 A resolution: self-hydroxylation of Phe300 and the pterin-binding site. Biochemistry (Mosc). 1998, 37 (39): 13437-13445.

Vrana KE, Walker SJ, Rucker P, Liu X: A carboxyl terminal leucine zipper is required for tyrosine hydroxylase tetramer formation. J Neurochem. 1994, 63 (6): 2014-2020.

Kumer SC, Vrana KE: Intricate regulation of tyrosine hydroxylase activity and gene expression. J Neurochem. 1996, 67 (2): 443-462.

Nankova B: Induction of tyrosine hydroxylase gene expression by a nonneuronal nonpituitary-mediated mechanism in immobilization stress. Proc Natl Acad Sci USA. 1994, 91 (13): 5937-5941.

Sabban E, Kvetňanský R: Stress-triggered activation of gene expression in catecholaminergic systems: dynamics of transcriptional events. Trends Neurosci. 2001, 24 (2): 91-98.

Sabban EL, Liu X, Serova L, Gueorguiev V, Kvetnansky R: Stress triggered changes in gene expression in adrenal medulla: transcriptional responses to acute and chronic stress. Cell Mol Neurobiol. 2006, 26 (4–6): 845-856.

Nakashima A, Ota A, Sabban EL: Interactions between Egr1 and AP1 factors in regulation of tyrosine hydroxylase transcription. Brain Res Mol Brain Res. 2003, 112 (1–2): 61-69.

Fitzpatrick PF: The pH dependence of binding of inhibitors to bovine adrenal tyrosine hydroxylase. J Biol Chem. 1988, 263 (31): 16058-16062.

Haavik J, Martínez a Flatmark: pH-dependent release of catecholamines from tyrosine hydroxylase and the effect of phosphorylation of Ser-40. FEBS Lett. 1990, 262 (2): 363-536.

Daubner SC, Lauriano C, Haycock JW, Fitzpatrick PF: Site-directed Mutagenesis of Serine 40 of Rat Tyrosine Hydroxylase. J Biol Chem. 1992, 267: 12639-12646.

Ichimura T, Isobe T, Okuyama T: Brain 14–3-3 protein is an activator protein that activates tryptophan 5-monooxygenase and tyrosine 3-monooxygenase in the presence of Ca2+, calmodulin-. FEBS Lett. 1987, 219: 79-82.

Nakashima A, Hayashi N, Kaneko Y: RNAi of 14–3-3η protein increases intracellular stability of tyrosine hydroxylase. Biochem Biophys Res Commun. 2007, 363 (3): 817-821.

Obsilova V, Nedbalkova E, Silhan J: The 14–3-3 protein affects the conformation of the regulatory domain of human tyrosine hydroxylase. Biochemistry (Mosc). 2008, 47 (6): 1768-1777.

Bobrovskaya L, Dunkley PR, Dickson PW: Phosphorylation of Ser19 increases both Ser40 phosphorylation and enzyme activity of tyrosine hydroxylase in intact cells. J Neurochem. 2004, 90 (4): 857-864.

Bevilaqua LR, Graham ME, Dunkley PR, von Nagy-Felsobuki EI, Dickson PW: Phosphorylation of Ser(19) alters the conformation of tyrosine hydroxylase to increase the rate of phosphorylation of Ser(40). J Biol Chem. 2001, 276 (44): 40411-40416.

Lehmann IT, Bobrovskaya L, Gordon SL, Dunkley PR, Dickson PW: Differential regulation of the human tyrosine hydroxylase isoforms via hierarchical phosphorylation. J Biol Chem. 2006, 281 (26): 17644-17651.

Salvatore MF, Waymire JC, Haycock JW: Depolarization-stimulated catecholamine biosynthesis: involvement of protein kinases and tyrosine hydroxylase phosphorylation sites in situ. J Neurochem. 2001, 79 (2): 349-360.

Nelson TJ, Kaufman S: Activation of rat caudate tyrosine hydroxylase phosphatase by tetrahydropterins. J Biol Chem. 1987, 262 (34): 16470-16475.

Leal RB, Sim ATR, Gonçalves CAS, Dunkley PR: Tyrosine hydroxylase dephosphorylation by protein phosphatase 2A in bovine adrenal chromaffin cells. Neurochem Res. 2002, 27 (3): 207-213.

Bevilaqua L: Role of protein phosphatase 2C from bovine adrenal chromaffin cells in the dephosphorylation of phospho-serine 40 tyrosine hydroxylase. J Neurochem. 2003, 85 (6): 1368-1373.

Ara J, Przedborski S, Naini AB, Jackson-Lewis V, Trifiletti RR, Horwitz J, Ischiropoulos H: Inactivation of tyrosine hydroxylase by nitration following exposure to peroxynitrite and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Proc Natl Acad Sci USA. 1998, 95 (13): 7659-7663.

Ischiropoulos H: Biological selectivity and functional aspects of protein tyrosine nitration. Biochem Biophys Res Commun. 2003, 305 (3): 776-783.

Kuhn DM, Aretha CW, Geddes TJ: Peroxynitrite inactivation of tyrosine hydroxylase: mediation by sulfhydryl oxidation, not tyrosine nitration. J Neurosci. 1999, 19 (23): 10289-10294.

Kuhn DM, Sakowski SA, Sadidi M, Geddes TJ: Nitrotyrosine as a marker for peroxynitrite-induced neurotoxicity: the beginning or the end of the end of dopamine neurons?. J Neurochem. 2004, 89 (3): 529-536.

Ota A, Nakashima A, Mori K, Nagatsu T: Effects of dopamine on N-terminus-deleted human tyrosine hydroxylase type 1 expressed in Escherichia coli. Neurosci Lett. 1997, 229: 57-60.

Nakashima A, Mori K, Suzuki T, Kurita H, Otani M, Nagatsu T, Ota A: Dopamine inhibition of human tyrosine hydroxylase type 1 is controlled by the specific portion in the N-terminus of the enzyme. J Neurochem. 1999, 72 (5): 2145-2153.

Nakashima A, Kaneko YS, Mori K, Fujiwara K, Tsugu T, Suzuki T, Nagatsu T, Ota A: The mutation of two amino acid residues in the N-terminus of tyrosine hydroxylase (TH) dramatically enhances the catalytic activity in neuroendocrine AtT-20 cells. J Neurochem. 2002, 82: 202-206.

Nakashima a, Hayashi N, Kaneko YS, Mori K, Sabban EL, Ota a, Nagatsu T: Role of N-terminus of tyrosine hydroxylase in the biosynthesis of catecholamines. J Neural Transm. 2009, 116 (11): 1355-1362.

Pasinetti G, Osterburg H, Kelly A, Kohama S, Morgan D, Reinhard J, Stellwagen R, Finch C: Slow changes of tyrosine hydroxylase gene expression in dopaminergic brain neurons after neurotoxin lesioning: a model for neuron aging. Mol Brain Res. 1992, 13 (1–2): 63-73.

Flatmark T, Døskeland A P: Ubiquitination of soluble and membrane-bound tyrosine hydroxylase and degradation of the soluble form. Eur J Biochem. 2002, 269 (5): 1561-1569.

Lopez-Verrilli MA, Pirola CJ, Pascual MM, Dominici FP, Turyn D, Gironacci MM: Angiotensin-(1–7) through AT receptors mediates tyrosine hydroxylase degradation via the ubiquitin-proteasome pathway. J Neurochem. 2009, 109 (2): 326-335.

Radivojac P, Vacic V, Haynes C, Cocklin RR, Mohan A, Heyen JW, Goebl MG, Iakoucheva LM: Identification, analysis, and prediction of protein ubiquitination sites. Proteins. 2010, 78 (2): 365-380.

Bowling KM, Huang Z, Xu D, Ferdousy F, Funderburk CD, Karnik N, Neckameyer W, O’Donnell JM: Direct binding of GTP cyclohydrolase and tyrosine hydroxylase: regulatory interactions between key enzymes in dopamine biosynthesis. J Biol Chem. 2008, 283 (46): 31449-31459.

Ishikawa S, Taira T, Niki T, Takahashi-Niki K, Maita C, Maita H, Ariga H, Iguchi-Ariga SMM: Oxidative status of DJ-1-dependent activation of dopamine synthesis through interaction of tyrosine hydroxylase and 4-dihydroxy-L-phenylalanine (L-DOPA) decarboxylase with DJ-1. J Biol Chem. 2009, 284 (42): 28832-28844.

Perez R, Waymire J, Lin E: A role for α-synuclein in the regulation of dopamine biosynthesis. J Neurosci. 2002, 22 (8): 3090-3099.

Studer L, Csete M, Lee SH, Kabbani N, Walikonis J, Wold B, McKay R: Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. J Neurosci. 2000, 20 (19): 7737-7783.

Kumar GK, Kim DK, Lee MS, Ramachandran R, Prabhakar NR: Activation of tyrosine hydroxylase by intermittent hypoxia: involvement of serine phosphorylation. J Appl Physiol. 2003, 95 (2): 536-544.

Kopin I: Catecholamine metabolism: basic aspects and clinical significance. Pharmacol Rev. 1985, 37 (4): 333-364.

Napolitano A, Cesura AM, Prada MD: The role of monoamine oxidase and catechol O-methyltransferase in dopaminergic neurotransmission. J Neural Transm Suppl. 1995, 45: 35-45.

Bracher A, Wolfgang Eisenreich NS, Ritz H, Götze E, Herrmann A, Gütlich M, Bacher A: Biosynthesis of pteridines. J Biol Chem. 1998, 273 (43): 28132-28141.

Thöny B, Auerbach G, Blau N: Tetrahydrobiopterin biosynthesis, regeneration and functions. Biochem J. 2000, 347: 1-16.

Werner ER, Blau N, Thöny B: Tetrahydrobiopterin: biochemistry and pathophysiology. Biochem J. 2011, 438 (3): 397-414.

Choi HJ, Lee SY, Cho Y, No H, Kim SW, Hwang O: Tetrahydrobiopterin causes mitochondrial dysfunction in dopaminergic cells: implications for Parkinson’s disease. Neurochem Int. 2006, 48 (4): 255-262.

Ichinose H, Ohye T, Fujita K, Pantucek F, Lange K, Riederer P, Nagatsu T: Quantification of mRNA of tyrosine hydroxylase and aromatic L-amino acid decarboxylase in the substantia nigra in Parkinson’s disease and schizophrenia. J Neural Transm Park Dis Dement Sect. 1994, 8 (1–2): 149-158.

Togari H, Sobajima H, Suzuki S: Oxygen and reduced umbilical blood flow trigger the first breath of human neonates. Acta Paediatr Jpn. 1992, 34 (6): 660-662.

Lentz S, Kapatos G: Tetrahydrobiopterin biosynthesis in the rat brain: heterogeneity of GTP cyclohydrolase I mRNA expression in monoamine-containing neurons. Neurochem Int. 1996, 28: 569-582.

Kapatos G, Stegenga SL, Hirayama K: Identification and characterization of basal and cyclic AMP response elements in the promoter of the rat GTP cyclohydrolase I gene. J Biol Chem. 2000, 275 (8): 5947-5957.

Dassesse D, Hemmens B, Cuvelier L, Résibois a: GTP-cyclohydrolase-I like immunoreactivity in rat brain. Brain Res. 1997, 777 (1–2): 187-201.

Suzuki T, Ohye T, Inagaki H, Nagatsu T, Ichinose H: Characterization of wild-type and mutants of recombinant human GTP cyclohydrolase I:relationship to etiology of dopa-responsive dystonia. J Neurochem. 1999, 73 (6): 2510-2516.

Ichinose H, Ohye T, Takahashi E, Seki N, Hori T, Segawa M, Nomura Y, Endo K, Tanaka H, Tsuji S: Hereditary progressive dystonia with marked diurnal fluctuation caused by mutations in the GTP cyclohydrolase I gene. Nat Genet. 1994, 8 (3): 236-242.

Müller U, Steinberger D, Topka H: Mutations of GCH1 in Dopa-responsive dystonia. J Neural Transm. 2002, 109 (3): 321-328.

Thöny B, Blau N: Mutations in the BH4-Metabolizing Genes GTP Cyclohydrolase I , 6-Pyruvoyl-Tetrahydropterin Synthase, Sepiapterin Reductase, Carbinolamine-4a- Dehydratase, and Dihydropteridine Reductase. Hum Mutat. 2006, 27 (9): 870-878.

Niederwieser A, Shintaku H, Leimbacher W, Curtius HC, Hyànek J, Zeman J, Endres W: Peripheral tetrahydrobiopterin deficiency with hyperphenylalaninaemia due to incomplete 6-pyruvoyl tetrahydropterin synthase deficiency or heterozygosity. Eur J Pediatr. 1987, 146 (3): 228-232.

Duch G, Smith DS: Biosynthesis and function of tetrahydrobiopterin. J Nutr Biochem. 1991, 2: 411-423.

Harada T, Kagamiyama H, Hatakeyama K: Feedback regulation mechanisms for the control of GTP cyclohydrolase I activity. Science. 1993, 260 (5113): 1507-1510.

Bonafé L, Thöny B, Leimbacher W, Kierat L, Blau N: Diagnosis of dopa-responsive dystonia and other tetrahydrobiopterin disorders by the study of biopterin metabolism in fibroblasts. Clin Chem. 2001, 47 (3): 477-485.

Lapize C, Plüss C, Werner ER, Huwiler a Pfeilschifter, J: Protein kinase C phosphorylates and activates GTP cyclohydrolase I in rat renal mesangial cells. Biochem Biophys Res Commun. 1998, 251 (3): 802-805.

Widder JD, Chen W, Li L, Dikalov S, Thöny B, Hatakeyama K, Harrison DG: Regulation of tetrahydrobiopterin biosynthesis by shear stress. Circ Res. 2007, 101 (8): 830-838.

Funderburk CD, Bowling KM, Xu D, Huang Z, O’Donnell JM: A typical N-terminal extensions confer novel regulatory properties on GTP cyclohydrolase isoforms in Drosophila melanogaster. J Biol Chem. 2006, 281 (44): 33302-33312.

Krishnakumar S, Burton D, Rasco J, Chen X, O’donnell J: Functional interactions between GTP cyclohydrolase I and tyrosine hydroxylase in drosophila. J Neurogenet. 2000, 14: 1-23.

Schales O, Schales SS: Dihydroxyphenylalanine decarboxylase; preparation and properties of a stable dry powder. Arch Biochem. 1949, 24: 83-91.

Clark CT, Weissbach H, Udenfriend S: 5-Hydroxytryptophan decarboxylase: preparation and properties. J Biol Chem. 1954, 210: 139-148.

Moore PS, Dominici P, Voltattorni CB: Cloning and expression of pig kidney dopa decarboxylase: comparison of the naturally occurring and recombinant enzymes. Biochem J. 1996, 315 (Pt 1): 249-256.

Flatmark T: Catecholamine biosynthesis and physiological regulation in neuroendocrine cells. Acta Physiol Scand. 2000, 168: 1-17.

Berry M, Juorio A, Li X, Boulton A: Aromatic L-amino acid decarboxylase: a neglected and misunderstood enzyme. Neurochem Res. 1996, 21 (9): 1075-1087.

Zhu MY, Juorio AV: Aromatic L-amino acid decarboxylase: biological characterization and functional role. Gen Pharmacol. 1995, 26 (4): 681-696.

Hadjiconstantinou M, Neff NH: Enhancing aromatic L-amino acid decarboxylase activity: implications for L-DOPA treatment in Parkinson’s disease. CNS Neurosci Ther. 2008, 14 (4): 340-351.

O’Malley KL, Harmon S, Moffat M, Uhland-Smith A, Wong S: The human aromatic L-amino acid decarboxylase gene can be alternatively spliced to generate unique protein isoforms. J Neurochem. 1995, 65 (6): 2409-2416.

Duchemin AM, Berry MD, Neff NH, Hadjiconstantinou M: Phosphorylation and activation of brain aromatic L-amino acid decarboxylase by cyclic AMP-dependent protein kinase. J Neurochem. 2000, 75 (2): 725-731.

Cumming P, Ase a, Laliberté C, Kuwabara H, Gjedde a: In vivo regulation of DOPA decarboxylase by dopamine receptors in rat brain. J Cereb Blood Flow Metab. 1997, 17 (11): 1254-1260.

Hadjiconstantinou M, Wemlinger TA, Sylvia CP, Hubble JP, Neff NH: Aromatic L-amino acid decarboxylase activity of mouse striatum is modulated via dopamine receptors. J Neurochem. 1993, 60 (6): 2175-2180.

Zhu MY, Juorio AV, Paterson IA, Boulton AA: Regulation of striatal aromatic L-amino acid decarboxylase: effects of blockade or activation of dopamine receptors. Eur J Pharmacol. 1993, 238 (2–3): 157-164.

Cho S, Neff NH, Hadjiconstantinou M: Regulation of tyrosine hydroxylase and aromatic L-amino acid decarboxylase by dopaminergic drugs. Eur J Pharmacol. 1997, 323 (2–3): 149-157.

Cumming P, Kuwabara H, Ase A, Gjedde A: Regulation of DOPA decarboxylase activity in brain of living rat. J Neurochem. 1995, 65 (3): 1381-1390.

Gjedde A, Léger GC, Cumming P, Yasuhara Y, Evans AC, Guttman M, Kuwabara H: Striatal L-DOPA decarboxylase activity in Parkinson’s disease In Vivo: Implications for the regulation of dopamine synthesis. J Neurochem. 1993, 61 (4): 1538-1541.

Sampaio-Maia B, Serrão MP, da Silva PS: Regulatory pathways and uptake of L-DOPA by capillary cerebral endothelial cells, astrocytes, and neuronal cells. Am J Physiol Cell Physiol. 2001, 280 (2): C333—C342-

Reith J: Elevated Dopa Decarboxylase Activity in Living Brain of Patients with Psychosis. Proc Natl Acad Sci USA. 1994, 91 (24): 11651-11654.

Werkman TR, Glennon JC, Wadman WJ, McCreary AC: Dopamine receptor pharmacology: Interactions with serotonin receptors and significance for the aetiology and treatment of schizophrenia. CNS Neuro Disord - Drug Targets (Formerly Curr Drug Targets). 2006, 5: 3-23.

Zhang H, Sulzer D: Regulation of striatal dopamine release by presynaptic auto- and heteroreceptors. Basal Ganglia. 2012, 2: 5-13.

Eriksen J, Jørgensen TN, Gether U: Regulation of dopamine transporter function by protein-protein interactions: new discoveries and methodological challenges. J Neurochem. 2010, 113: 27-41.

Eisenhofer G, Kopin IJ, Goldstein DS: Catecholamine metabolism : A contemporary view with implications for physiology and medicine. Pharmacol Rev. 2004, 56 (3): 331-349.

Männistö PT, Ulmanen I, Lundström K, Taskinen J, Tenhunen J, Tilgmann C, Kaakkola S: Characteristics of catechol O-methyl-transferase (COMT) and properties of selective COMT inhibitors. Prog Drug Res. 1992, 39: 291-350.

Männistö PT, Kaakkola S: Catechol-O-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors. Pharmacol Rev. 1999, 51 (4): 593-628.

Myöhänen TT, Schendzielorz N, Männistö PT: Distribution of catechol-O-methyltransferase (COMT) proteins and enzymatic activities in wild-type and soluble COMT deficient mice. J Neurochem. 2010, 113 (6): 1632-1643.

Uutela P, Karhu L, Piepponen P, Käenmäki M, Ketola RA, Kostiainen R: Discovery of dopamine glucuronide in rat and mouse brain microdialysis samples using liquid chromatography tandem mass spectrometry. Anal Chem. 2009, 81: 427-434.

Buu NT, Duhaime J, Savard C, Truong L, Kuchel O: Presence of conjugated catecholamines in rat brain: A new method of analysis of catecholamine sulfates. J Neurochem. 1981, 36 (2): 769-772.

Eisenhofer G, Coughtrie MW, Goldstein DS: Dopamine sulphate: an enigma resolved. Clin Exp Pharmacol Physiol Suppl. 1999, 26: S41—S53-

Merits I: Formation and metabolism of [14C] dopamine 3-O-sulfate in dog, rat and guinea pig. Biochem Pharmacol. 1976, 25 (7): 829-833.

Tukey RH, Strassburg CP: Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu Rev Pharmacol Toxicol. 2000, 40: 581-616.

Itäaho K, Court MH, Uutela P, Kostiainen R, Radominska-Pandya A, Finel M: Dopamine is a low-affinity and high-specificity substrate for the human UDP-glucuronosyltransferase 1A10. Drug Metab Dispos. 2009, 37 (4): 768-775.

Swahn CG, Wiesel FA: Determination of conjugated monoamine metabolites in brain tissue. J Neural Transm. 1976, 39 (4): 281-290.

Johnston JP: Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem Pharmacol. 1968, 17 (7): 1285-1297.

Bach AW, Lan NC, Johnson DL, Abell CW, Bembenek ME, Kwan SW, Seeburg PH, Shih JC: cDNA cloning of human liver monoamine oxidase A and B: molecular basis of differences in enzymatic properties. Proc Natl Acad Sci USA. 1988, 85 (13): 4934-4938.

Westlund K, Denney R, Rose R, Abell C: Localization of distinct monoamine oxidase a and monoamine oxidase b cell populations in human brainstem. Neuroscience. 1988, 25 (2): 439-456.

Davis GC, Williams AC, Markey SP, Ebert MH, Caine ED, Reichert CM, Kopin IJ: Chronic Parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res. 1979, 1 (3): 249-254.

Heikkila RE, Manzino L, Cabbat FS, Duvoisin RC: Protection against the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine by monoamine oxidase inhibitors. Nature. 1984, 311 (5985): 467-469.

Tenhunen J, Salminen M, Lundström K, Kiviluoto T, Savolainen R, Ulmanen I: Genomic organization of the human catechol O-methyltransferase gene and its expression from two distinct promoters. Eur J Biochem. 1994, 223 (3): 1049-1059.

Sulzer D, Bogulavsky J, Larsen KE, Behr G, Karatekin E, Kleinman MH, Turro N, Krantz D, Edwards RH, Greene LA, Zecca L: Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. Proc Natl Acad Sci USA. 2000, 97 (22): 11869-11874.

Muñoz P, Huenchuguala S, Paris I, Segura-Aguilar J: Dopamine oxidation and autophagy. Parkinsons Dis. 2012, 2012: 1-13.

Sulzer D, Zecca L: Intraneuronal dopamine-quinone synthesis: a review. Neurotox Res. 2000, 1 (3): 181-195.

Napolitano A, Manini P, D’Ischia M: Oxidation chemistry of catecholamines and neuronal degeneration: an update. Curr Med Chem. 2011, 18 (12): 1832-1845.

Napolitano A, Pezzella A, Prota G: New reaction pathways of dopamine under oxidative stress conditions: nonenzymatic iron-assisted conversion to norepinephrine and the neurotoxins 6-hydroxydopamine and 6, 7-dihydroxytetrahydroisoquinoline. Chem Res Toxicol. 1999, 12 (11): 1090-1097.

Mravec B: Salsolinol, a derivate of dopamine, is a possible modulator of catecholaminergic transmission: a review of recent developments. Physiol Res. 2006, 55 (4): 353-364.

Su Y, Duan J, Ying Z, Hou Y, Zhang Y, Wang R, Deng Y: Increased vulnerability of parkin knock down PC12 cells to hydrogen peroxide toxicity: The role of salsolinol and NM-salsolinol. Neuroscience. 2013, 233: 72-85.

Berman SB, Zigmond MJ, Hastings TG: Modification of dopamine transporter function: effect of reactive oxygen species and dopamine. J Neurochem. 1996, 67 (2): 593-600.

Moore DJ, West AB, Dawson VL, Dawson TM: Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci. 2005, 28: 57-87.

Wakabayashi K, Tanji K, Mori F, Takahashi H: The Lewy body in Parkinson’s disease: molecules implicated in the formation and degradation of alpha-synuclein aggregates. Neuropathology. 2007, 27 (5): 494-506.

Uéda K, Fukushima H, Masliah E, Xia Y, Iwai A, Yoshimoto M, Otero DA, Kondo J, Ihara Y, Saitoh T: Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc Natl Acad Sci USA. 1993, 90 (23): 11282-11286.

Lashuel HA, Hartley D, Petre BM, Walz T, Lansbury PT: Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature. 2002, 418 (6895): 291-

Mazzulli JR, Mishizen AJ, Giasson BI, Lynch DR, Thomas SA, Nakashima A, Nagatsu T, Ota A, Ischiropoulos H: Cytosolic catechols inhibit alpha-synuclein aggregation and facilitate the formation of intracellular soluble oligomeric intermediates. J Neurosci. 2006, 26 (39): 10068-10078.

Nappi AJ, Vass E: Hydroxyl radical formation via iron-mediated Fenton chemistry is inhibited by methylated catechols. Biochim Biophys Acta. 1998, 1425: 159-167.

Miller JW, Selhub J, Joseph JA: Oxidative damage caused by free radicals produced during catecholamine autoxidation: protective effects of O-methylation and melatonin. Free Radic Biol Med. 1996, 21 (2): 241-249.

Asanuma M, Miyazaki I, Ogawa N: Dopamine- or L-DOPA-induced neurotoxicity: The role of dopamine quinone formation and tyrosinase in a model of Parkinson’s disease. Neurotox Res. 2003, 5 (3): 165-176.

Zecca L, Costi P, Mecacci C, Ito S, Terreni M, Sonnino S: Interaction of human substantia nigra neuromelanin with lipids and peptides. J Neurochem. 2000, 74 (4): 1758-1765.

Zecca L, Tampellini D, Gerlach M, Riederer P, Fariello RG, Sulzer D: Substantia nigra neuromelanin: structure, synthesis, and molecular behaviour. Mol Pathol. 2001, 54 (6): 414-418.

Dreyer DR, Miller DJ, Freeman BD, Paul DR, Bielawski CW: Elucidating the structure of poly(dopamine). Langmuir. 2012, 28 (15): 6428-6435.

Tribl F, Gerlach M, Marcus K, Asan E, Tatschner T, Arzberger T, Meyer HE, Bringmann G, Riederer P: “Subcellular proteomic” of neuromelanin granules isolated from the human brain. Mol Cell Proteomics. 2005, 4 (7): 945-957.

Liu Y, Schweitzer ES, Nirenberg MJ, Pickel VM, Evans CJ, Edwards RH: Preferential localization of a vesicular monoamine transporter to dense core vesicles in PC12 cells. J Cell Biol. 1994, 127 (5): 1419-1433.

Peter D, Liu Y, Sternini C, de Giorgio R, Brecha N, Edwards RH: Differential expression of two vesicular monoamine transporters. J Neurosci. 1995, 15 (9): 6179-6188.

Zecca L, Casella L, Albertini A, Bellei C, Zucca FA, Engelen M, Zadlo A, Szewczyk G, Zareba M, Sarna T: Neuromelanin can protect against iron-mediated oxidative damage in system modeling iron overload of brain aging and Parkinson’s disease. J Neurochem. 2008, 106 (4): 1866-1875.

Zecca L, Zucca FA, Albertini A, Rizzio E, Fariello RG: A proposed dual role of neuromelanin in the pathogenesis of Parkinson’s disease. Neurology. 2006, 67 (7 Suppl 2): S8—11-

Double KL: Functional effects of neuromelanin and synthetic melanin in model systems. J Neural Transm. 2006, 113 (6): 751-756.

Zecca L, Fariello R, Riederer P, Sulzer D, Gatti A, Tampellini D: The absolute concentration of nigral neuromelanin, assayed by a new sensitive method, increases throughout the life and is dramatically decreased in Parkinson’s disease. FEBS Lett. 2002, 510 (3): 216-220.

Wilms H, Rosenstiel P, Sievers J, Deuschl G: Activation of microglia by human neuromelanin is NF-κB dependent and involves p38 mitogen-activated protein kinase: implications for Parkinson’s disease. FASEB J. 2003, 17: 500-502.

Beal MF: Mitochondria, oxidative damage, and inflammation in Parkinson’s disease. Ann NY Acad Sci. 2003, 991: 120-131.

Kim SU, de Vellis J: Microglia in health and disease. J Neurosci Res. 2005, 81 (3): 302-313.

Whitton PS: Inflammation as a causative factor in the aetiology of Parkinson’s disease. Br J Pharmacol. 2007, 150 (8): 963-976.

Hirsch EC, Hunot S: Neuroinflammation in Parkinson’s disease: a target for neuroprotection?. Lancet Neurol. 2009, 8 (4): 382-397.

Metodiewa D, Kośka C: Reactive oxygen species and reactive nitrogen species: relevance to cyto(neuro)toxic events and neurologic disorders. An overview. Neurotox Res. 2000, 1 (3): 197-233.

Kohen R, Nyska A: Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol. 2002, 30 (6): 620-650.

Hald A, Lotharius J: Oxidative stress and inflammation in Parkinson’s disease: is there a causal link?. Exp Neurol. 2005, 193 (2): 279-290.

Zhang J, Perry G, Smith MA, Robertson D, Olson SJ, Graham DG, Montine TJ: Parkinson’s disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. Am J Pathol. 1999, 154 (5): 1423-1429.

Friedlander RM: Apoptosis and caspases in neurodegenerative diseases. N Engl J Med. 2003, 348 (14): 1365-1375.

Halliwell B: Oxidative stress and neurodegeneration: where are we now?. J Neurochem. 2006, 97: 1634-1658.

McGeer PL, Itagaki S, Boyes BE, McGeer EG: Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology. 1988, 38 (8): 1285-1291.

McGeer PL, Itagaki S, Akiyama H, McGeer EG: Rate of cell death in parkinsonism indicates active neuropathological process. Ann Neurol. 1988, 24 (4): 574-576.

McGeer PL, Kawamata T, Walker DG, Akiyama H, Tooyama I, McGeer EG: Microglia in degenerative neurological disease. Glia. 1993, 7: 84-92.

Le W, Rowe D, Xie W, Ortiz I, He Y, Appel SH: Microglial activation and dopaminergic cell injury: an in vitro model relevant to Parkinson’s disease. J Neurosci. 2001, 21 (21): 8447-8455.

Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D: Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol. 1999, 46 (4): 598-605.

McGeer PL, Schwab C, Parent A, Doudet D: Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration. Ann Neurol. 2003, 54 (5): 599-604.

Gao HM, Liu B, Zhang W, Hong JS: Novel anti-inflammatory therapy for Parkinson’s disease. Trends Pharmacol Sci. 2003, 24 (8): 395-401.

Ischiropoulos H, Zhu L, Chen J, Tsai M, Martin JC, Smith CD, Beckman JS: Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophys. 1992, 298 (2): 431-437.

Zhong N, Kim CY, Rizzu P, Geula C, Porter DR, Pothos EN, Squitieri F, Heutink P, Xu J: DJ-1 transcriptionally up-regulates the human tyrosine hydroxylase by inhibiting the sumoylation of pyrimidine tract-binding protein-associated splicing factor. J Biol Chem. 2006, 281 (30): 20940-20948.

Greene LA, Tischler AS: Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA. 1976, 73 (7): 2424-2428.

Hyman AH, Simons K: The new cell biology: Beyond HeLa cells. Nature. 2011, 480 (7375): 34-

Choi HK, Won L, Roback JD, Wainer BH, Heller A: Specific modulation of dopamine expression in neuronal hybrid cells by primary cells from different brain regions. Proc Natl Acad Sci USA. 1992, 89 (19): 8943-8947.

Rick CE, Ebert A, Virag T, Bohn MC, Surmeier DJ: Differentiated dopaminergic MN9D cells only partially recapitulate the electrophysiological properties of midbrain dopaminergic neurons. Dev Neurosci. 2006, 28 (6): 528-537.

Biedler JL, Helson L, Spengler BA: Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res. 1973, 33: 2643-2652.

Biedler JL, Roffler-Tarlov S, Schachner M, Freedman LS: Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res. 1978, 38 (11 Pt 1): 3751-3757.

Rettig WJ, Spengler BA, Chesa PG, Old LJ, Biedler JL: Coordinate changes in neuronal phenotype and surface antigen expression in human neuroblastoma cell variants. Cancer Res. 1987, 47 (5): 1383-1389.

Xie Hong-rong HLs, Guo-yi L: SH-SY5Y human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson’s disease. Chin Med. 2010, 123 (8): 1086-1092.

Balasooriya Inoka S WK: Are SH-SY5Y and MN9D cell lines truly dopaminergic?. Proc 3rd Annu GRASP Symp. 2007, 25-26.

Lotharius J, Falsig J, van Beek J, Payne S, Dringen R, Brundin P, Leist M: Progressive degeneration of human mesencephalic neuron-derived cells triggered by dopamine-dependent oxidative stress is dependent on the mixed-lineage kinase pathway. J Neurosci. 2005, 25 (27): 6329-6342.

Scholz D, Pöltl D, Genewsky A, Weng M, Waldmann T, Schildknecht S, Leist M: Rapid, complete and large-scale generation of post-mitotic neurons from the human LUHMES cell line. J Neurochem. 2011, 119 (5): 957-971.

Okita K, Ichisaka T, Yamanaka S: Generation of germline-competent induced pluripotent stem cells. Nature. 2007, 448 (7151): 313-317.

Bellin M, Marchetto MC, Gage FH, Mummery CL: Induced pluripotent stem cells: the new patient?. Nat Rev Mol Cell Biol. 2012, 13 (11): 713-726.

Reinhardt P, Schmid B, Burbulla LF, Schöndorf DC, Wagner L, Glatza M, Höing S, Hargus G, Heck SA, Dhingra A, Wu G, Müller S, Brockmann K, Kluba T, Maisel M, Krüger R, Berg D, Tsytsyura Y, Thiel CS, Psathaki OE, Klingauf J, Kuhlmann T, Klewin M, Müller H, Gasser T, Schöler HR, Sterneckert J: Genetic correction of a LRRK2 mutation in human iPSCs links Parkinsonian Neurodegeneration to ERK-dependent changes in gene expression. Cell Stem Cell. 2013, 12 (3): 354-367.

Han DW, Tapia N, Hermann A, Hemmer K, Höing S, Araúzo-Bravo MJ, Zaehres H, Wu G, Frank S, Moritz S, Greber B, Yang JH, Lee HT, Schwamborn JC, Storch A, Schöler HR: Direct reprogramming of fibroblasts into neural stem cells by defined factors. Cell Stem Cell. 2012, 10 (4): 465-472.

Cho MS, Hwang DY, Kim DW: Efficient derivation of functional dopaminergic neurons from human embryonic stem cells on a large scale. Nat Protoc. 2008, 3 (12): 1888-1894.

Cho MS, Lee YE, Kim JY, Chung S, Cho YH, Kim DS, Kang SM, Lee H, Kim MH, Kim JH, Leem JW, Oh SK, Choi YM, Hwang DY, Chang JW, Kim DW: Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci USA. 2008, 105 (9): 3392-3397.

Gunness P, Mueller D, Shevchenko V, Heinzle E, Ingelman-Sundberg M: 3D organotypic cultures of human HepaRG cells: a tool for in vitro toxicity studies. Toxicol Sci. 2013, 10.1093/toxsci/kft021.

Schildknecht S, Kirner S, Henn A, Gasparic K, Pape R, Efremova L, Maier O, Fischer R, Leist M: Characterization of mouse cell line IMA 2.1 as a potential model system to study astrocyte functions. ALTEX. 2012, 29 (3): 261-274.

van Rooden SM, Colas F, Martínez-Martín P, Visser M, Verbaan D, Marinus J, Chaudhuri RK, Kok JN, van Hilten JJ: Clinical subtypes of Parkinson’s disease. Mov Disord. 2011, 26: 51-58.

Eggers C, Kahraman D, Fink GR, Schmidt M, Timmermann L: Akinetic-rigid and tremor-dominant Parkinson’s disease patients show different patterns of FP-CIT single photon emission computed tomography. Mov Disord. 2011, 26 (3): 416-423.

Marsden CD, Parkes JD: "On-off" effects in patients with Parkinson’s disease on chronic levodopa therapy. Lancet. 1976, 1 (7954): 292-296.

Bottiglieri T, Arning E, Wasek B, Nunbhakdi-Craig V, Sontag JM, Sontag E: Acute administration of L-DOPA induces changes in methylation metabolites, reduced protein phosphatase 2A methylation, and hyperphosphorylation of Tau protein in mouse brain. J Neurosci. 2012, 32 (27): 9173-9181.

Hu XW, Qin SM, Li D, Hu LF, Liu CF: Elevated homocysteine levels in levodopa-treated idiopathic Parkinson’s disease: a meta-analysis. 2013

Müller T, Laar Tv, Cornblath DR, Odin P, Klostermann F, Grandas FJ, Ebersbach G, Urban PP, Valldeoriola F, Antonini A: Peripheral neuropathy in Parkinson’s disease: Levodopa exposure and implications for duodenal delivery. Parkinsonism Relat Disord. 2013, 19 (5): 501-507.

Toth C, Breithaupt K, Ge S, Duan Y, Terris JM, Thiessen A, Wiebe S, Zochodne DW, Suchowersky O: Levodopa, methylmalonic acid, and neuropathy in idiopathic Parkinson disease. Ann Neurol. 2010, 68: 28-36.

Shin JY, Ahn YH, Paik MJ, Park HJ, Sohn YH, Lee PH: Elevated homocysteine by levodopa is detrimental to neurogenesis in parkinsonian model. PLoS One. 2012, 7 (11): e50496-

Müller T: Role of homocysteine in the treatment of Parkinson’s disease. Expert Rev Neurother. 2008, 8 (6): 957-967.

Poewe W, Mahlknecht P, Jankovic J: Emerging therapies for Parkinson’s disease. Curr Opin Neurol. 2012, 25 (4): 448-459.

Zhao R, Daley GQ: From fibroblasts to iPS cells: induced pluripotency by defined factors. J Cell Biochem. 2008, 105 (4): 949-955.

Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, Daley GQ: Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 2008, 451 (7175): 141-146.

Halliwell B: Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging. 2001, 18 (9): 685-716.

Pocotte SL, Holz RW, Ueda T: Cholinergic receptor-mediated phosphorylation and activation of tyrosine hydroxylase in cultured bovine adrenal chromaffin cells. J Neurochem. 1986, 46 (2): 610-622.

Ishikawa A, Miyatake T: Effects of smoking in patients with early-onset Parkinson’s disease. J Neurol Sci. 1993, 117 (1–2): 28-32.

Quik M, Kulak JM: Nicotine and nicotinic receptors; relevance to Parkinson’s disease. Neurotoxicology. 2002, 23 (4–5): 581-594.

Eberling JL, Jagust WJ, Christine CW, Starr P, Larson P, Bankiewicz KS, Aminoff MJ: Results from a phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology. 2008, 70 (21): 1980-1983.

Muramatsu Si, Fujimoto Ki, Kato S, Mizukami H, Asari S, Ikeguchi K, Kawakami T, Urabe M, Kume A, Sato T, Ozawa K, Nakano I, Watanabe E: A phase I study of aromatic L-amino acid decarboxylase gene therapy for Parkinson’s disease. Mol Ther. 2010, 18 (9): 1731-1735.

Shen J, Cookson MR: Mitochondria and dopamine: new insights into recessive parkinsonism. Neuron. 2004, 43 (3): 301-304.

Muramatsu SI, Fujimoto KI, Ikeguchi K, Shizuma N, Kawasaki K, Ono F, Shen Y, Wang L, Mizukami H, Kume A, Matsumura M, Nagatsu I, Urano F, Ichinose H, Nagatsu T, Terao K, Nakano I, Ozawa K: Behavioral recovery in a primate model of Parkinson’s disease by triple transduction of striatal cells with adeno-associated viral vectors expressing dopamine-synthesizing enzymes. Hum Gene Ther. 2002, 13 (3): 345-354.

Jarraya B, Lepetit B, Ralph S: A phase I clinical trial on the safety and efficacy of ProSavin1 a dopamine replacement gene therapy for Parkinson’s disease (PD): an interim report. Mov Disord. 2010, 25 (S2): 267-