Sự đảo ngược hoàn toàn quá trình chuyển đổi biểu mô sang trung mô yêu cầu ức chế cả sự biểu hiện của ZEB và con đường Rho

Shreyas Das1, Bryan N. Becker2, F. M. Hoffmann1, Janet E. Mertz1
1McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, 1400 University Ave, Madison, Wisconsin, 53706, USA
2Department of Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, Wisconsin, 53792, USA

Tóm tắt

Tóm tắt Nền tảng

Quá trình chuyển đổi biểu mô sang trung mô (EMT) liên quan đến yếu tố tăng trưởng biến đổi-β (TGF-β) là một sự kiện tế bào quan trọng trong quá trình hình thành cơ quan, ung thư và xơ hóa cơ quan. Quy trình đảo ngược EMT vẫn chưa được thiết lập rõ ràng. Mục đích của chúng tôi là xác định các con đường truyền tín hiệu và các yếu tố phiên mã duy trì trạng thái trung mô do TGF-β gây ra.

Kết quả

Các chất ức chế năm loại kinase có liên quan đến EMT, bao gồm kinase thụ thể TGF-β loại I (TβRI), kinase p38 MAPK, kinase kinase MAP/extracellular signal-regulated kinase activator kinase (MEK1), kinase c-Jun NH-terminal (JNK), và kinase Rho (ROCK), đã được đánh giá về khả năng đảo ngược trạng thái trung mô được gây ra trong các tế bào biểu mô ống thận. Các tác nhân đơn lẻ không hoàn toàn đảo ngược EMT như được xác định bởi hình thái tế bào và biểu hiện gen. Tuy nhiên, việc tiếp xúc với chất ức chế TβRI SB431542, kết hợp với chất ức chế ROCK Y27632, đã loại bỏ các sợi căng stress actin có thể phát hiện và biểu hiện gen trung mô trong khi phục hồi biểu hiện E-cadherin và cadherin đặc hiệu thận (Ksp-cadherin). Một sự kết hợp thứ hai, chất ức chế TβRI SB431542 cùng với chất ức chế p38 MAPK SB203580, cũng có tác dụng một phần trong việc đảo ngược EMT. Hơn nữa, chất ức chế JNK SP600125 ức chế hiệu quả của chất ức chế TβRI SB431542 trong việc đảo ngược EMT. Để khám phá cơ sở phân tử dưới đây đảo ngược EMT, chúng tôi cũng đã nhắm đến các yếu tố ức chế phiên mã ZEB1 và ZEB2/SIP1. Giảm biểu hiện ZEB1 và ZEB2 trong các tế bào tuyến vú của chuột bằng shRNAs đã đủ để tăng cường biểu hiện của các protein biểu mô như E-cadherin và khôi phục các đặc điểm biểu mô. Tuy nhiên, việc phục hồi hoàn toàn cortical F-actin cần phải ủ với chất ức chế ROCK Y27632 kết hợp với sự gõ của ZEB1/2.

Từ khóa


Tài liệu tham khảo

Savagner P: Leaving the neighborhood: molecular mechanisms involved during epithelial-mesenchymal transition. Bioessays. 2001, 23: 912-23. 10.1002/bies.1132.

Thiery JP: Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol. 2003, 15: 740-6. 10.1016/j.ceb.2003.10.006.

Bedi S, Vidyasagar A, Djamali A: Epithelial-to-mesenchymal transition and chronic allograft tubulointerstitial fibrosis. Transplant Rev (Orlando). 2008, 22: 1-5.

Moustakas A, Heldin CH: Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci. 2007, 98: 1512-20. 10.1111/j.1349-7006.2007.00550.x.

Strutz F, Zeisberg M, Ziyadeh FN, Yang CQ, Kalluri R, Muller GA, Neilson EG: Role of basic fibroblast growth factor-2 in epithelial-mesenchymal transformation. Kidney Int. 2002, 61: 1714-28. 10.1046/j.1523-1755.2002.00333.x.

Tse JC, Kalluri R: Mechanisms of metastasis: epithelial-to-mesenchymal transition and contribution of tumor microenvironment. J Cell Biochem. 2007, 101: 816-29. 10.1002/jcb.21215.

Massagu J: TGFbeta in Cancer. Cell. 2008, 134: 215-30. 10.1016/j.cell.2008.07.001.

Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y, Wrana JL: Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science. 2005, 307: 1603-9. 10.1126/science.1105718.

Derynck R, Zhang YE: Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003, 425: 577-84. 10.1038/nature02006.

ten Dijke P, Hill CS: New insights into TGF-beta-Smad signalling. Trends Biochem Sci. 2004, 29: 265-73. 10.1016/j.tibs.2004.03.008.

Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, Garcia De Herreros A: The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol. 2000, 2: 84-9. 10.1038/35000034.

Moreno-Bueno G, Cubillo E, Sarrio D, Peinado H, Rodriguez-Pinilla SM, Villa S, Bolos V, Jorda M, Fabra A, Portillo F: Genetic profiling of epithelial cells expressing E-cadherin repressors reveals a distinct role for Snail, Slug, and E47 factors in epithelial-mesenchymal transition. Cancer Res. 2006, 66: 9543-56. 10.1158/0008-5472.CAN-06-0479.

Shirakihara T, Saitoh M, Miyazono K: Differential regulation of epithelial and mesenchymal markers by deltaEF1 proteins in epithelial mesenchymal transition induced by TGF-beta. Mol Biol Cell. 2007, 18: 3533-44. 10.1091/mbc.E07-03-0249.

Spaderna S, Schmalhofer O, Wahlbuhl M, Dimmler A, Bauer K, Sultan A, Hlubek F, Jung A, Strand D, Eger A: The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer Res. 2008, 68: 537-44. 10.1158/0008-5472.CAN-07-5682.

Hurt EM, Saykally JN, Anose BM, Kalli KR, Sanders MM: Expression of the ZEB1 (deltaEF1) transcription factor in human: additional insights. Mol Cell Biochem. 2008, 318: 89-99. 10.1007/s11010-008-9860-z.

Aigner K, Descovich L, Mikula M, Sultan A, Dampier B, Bonne S, van Roy F, Mikulits W, Schreiber M, Brabletz T: The transcription factor ZEB1 (deltaEF1) represses Plakophilin 3 during human cancer progression. FEBS Lett. 2007, 581: 1617-24. 10.1016/j.febslet.2007.03.026.

Eger A, Aigner K, Sonderegger S, Dampier B, Oehler S, Schreiber M, Berx G, Cano A, Beug H, Foisner R: DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene. 2005, 24: 2375-85. 10.1038/sj.onc.1208429.

Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E, Mareel M, Huylebroeck D, van Roy F: The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell. 2001, 7: 1267-78. 10.1016/S1097-2765(01)00260-X.

Aigner K, Dampier B, Descovich L, Mikula M, Sultan A, Schreiber M, Mikulits W, Brabletz T, Strand D, Obrist P: The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene. 2007, 26: 6979-88. 10.1038/sj.onc.1210508.

Liu Y, El-Naggar S, Darling DS, Higashi Y, Dean DC: Zeb1 links epithelial-mesenchymal transition and cellular senescence. Development. 2008, 135: 579-88. 10.1242/dev.007047.

Oft M, Akhurst RJ, Balmain A: Metastasis is driven by sequential elevation of H-ras and Smad2 levels. Nat Cell Biol. 2002, 4: 487-94. 10.1038/ncb807.

Bhowmick NA, Zent R, Ghiassi M, McDonnell M, Moses HL: Integrin beta 1 signaling is necessary for transforming growth factor-beta activation of p38 MAPK and epithelial plasticity. J Biol Chem. 2001, 276: 46707-13. 10.1074/jbc.M106176200.

Li Y, Yang J, Dai C, Wu C, Liu Y: Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis. J Clin Invest. 2003, 112: 503-16.

Bakin AV, Rinehart C, Tomlinson AK, Arteaga CL: p38 mitogen-activated protein kinase is required for TGFbeta-mediated fibroblastic transdifferentiation and cell migration. J Cell Sci. 2002, 115: 3193-206.

Bhowmick NA, Ghiassi M, Bakin A, Aakre M, Lundquist CA, Engel ME, Arteaga CL, Moses HL: Transforming Growth Factor-beta1 Mediates Epithelial to Mesenchymal Transdifferentiation through a RhoA-dependent Mechanism. Mol Biol Cell. 2001, 12: 27-36.

Bakin AV, Tomlinson AK, Bhowmick NA, Moses HL, Arteaga CL: Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem. 2000, 275: 36803-10. 10.1074/jbc.M005912200.

Zavadil J, Cermak L, Soto-Nieves N, Bottinger EP: Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. Embo J. 2004, 23: 1155-65. 10.1038/sj.emboj.7600069.

Zhao BM, Hoffmann FM: Inhibition of transforming growth factor-beta1-induced signaling and epithelial-to-mesenchymal transition by the Smad-binding peptide aptamer Trx-SARA. Mol Biol Cell. 2006, 17: 3819-31. 10.1091/mbc.E05-10-0990.

Huber MA, Azoitei N, Baumann B, Grunert S, Sommer A, Pehamberger H, Kraut N, Beug H, Wirth T: NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest. 2004, 114: 569-81.

Bose R, Wrana JL: Regulation of Par6 by extracellular signals. Curr Opin Cell Biol. 2006, 18: 206-12. 10.1016/j.ceb.2006.02.005.

Xie L, Law BK, Chytil AM, Brown KA, Aakre ME, Moses HL: Activation of the Erk pathway is required for TGF-beta1-induced EMT in vitro. Neoplasia. 2004, 6: 603-10. 10.1593/neo.04241.

Wang Z, Li Y, Kong D, Banerjee S, Ahmad A, Azmi AS, Ali S, Abbruzzese JL, Gallick GE, Sarkar FH: Acquisition of epithelial-mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway. Cancer Res. 2009, 69: 2400-7. 10.1158/0008-5472.CAN-08-4312.

Thuault S, Tan EJ, Peinado H, Cano A, Heldin CH, Moustakas A: HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition. J Biol Chem. 2008, 283: 33437-46. 10.1074/jbc.M802016200.

Grande JP, Warner GM, Walker HJ, Yusufi AN, Cheng J, Gray CE, Kopp JB, Nath KA: TGF-beta1 is an autocrine mediator of renal tubular epithelial cell growth and collagen IV production. Exp Biol Med (Maywood). 2002, 227: 171-81.

Nat KA: Tubulointerstitial changes as a major determinant in the progression of renal damage. Am J Kidney Dis. 1992, 20: 1-17.

Shook D, Keller R: Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. Mech Dev. 2003, 120: 1351-83. 10.1016/j.mod.2003.06.005.

Meyer TN, Schwesinger C, Bush KT, Stuart RO, Rose DW, Shah MM, Vaughn DA, Steer DL, Nigam SK: Spatiotemporal regulation of morphogenetic molecules during in vitro branching of the isolated ureteric bud: toward a model of branching through budding in the developing kidney. Dev Biol. 2004, 275: 44-67. 10.1016/j.ydbio.2004.07.022.

Gawlik A, Quaggin SE: Conditional gene targeting in the kidney. Curr Mol Med. 2005, 5: 527-36. 10.2174/1566524054553522.

Zeisberg M, Maeshima Y, Mosterman B, Kalluri R: Renal fibrosis. Extracellular matrix microenvironment regulates migratory behavior of activated tubular epithelial cells. Am J Pathol. 2002, 160: 2001-8.

Nishimura G, Manabe I, Tsushima K, Fujiu K, Oishi Y, Imai Y, Maemura K, Miyagishi M, Higashi Y, Kondoh H: DeltaEF1 mediates TGF-beta signaling in vascular smooth muscle cell differentiation. Dev Cell. 2006, 11: 93-104. 10.1016/j.devcel.2006.05.011.

VanSaun MN, Matrisian LM: Matrix metalloproteinases and cellular motility in development and disease. Birth Defects Res C Embryo Today. 2006, 78: 69-79. 10.1002/bdrc.20061.

Brown K, Bhowmick NA: Linking TGF-beta-mediated Cdc25A inhibition and cytoskeletal regulation through RhoA/p160(ROCK) signaling. Cell Cycle. 2004, 3: 408-10.

Valcourt U, Kowanetz M, Niimi H, Heldin CH, Moustakas A: TGF-beta and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol Biol Cell. 2005, 16: 1987-2002. 10.1091/mbc.E04-08-0658.

Halder SK, Beauchamp RD, Datta PK: A specific inhibitor of TGF-beta receptor kinase, SB-431542, as a potent antitumor agent for human cancers. Neoplasia. 2005, 7: 509-21. 10.1593/neo.04640.

Inman GJ, Nicolas FJ, Callahan JF, Harling JD, Gaster LM, Reith AD, Laping NJ, Hill CS: SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol. 2002, 62: 65-74. 10.1124/mol.62.1.65.

Davies SP, Reddy H, Caivano M, Cohen P: Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J. 2000, 351: 95-105. 10.1042/0264-6021:3510095.

Lund LR, Riccio A, Andreasen PA, Nielsen LS, Kristensen P, Laiho M, Saksela O, Blasi F, Dano K: Transforming growth factor-beta is a strong and fast acting positive regulator of the level of type-1 plasminogen activator inhibitor mRNA in WI-38 human lung fibroblasts. Embo J. 1987, 6: 1281-6.

Laping NJ, Grygielko E, Mathur A, Butter S, Bomberger J, Tweed C, Martin W, Fornwald J, Lehr R, Harling J: Inhibition of transforming growth factor (TGF)-beta1-induced extracellular matrix with a novel inhibitor of the TGF-beta type I receptor kinase activity: SB-431542. Mol Pharmacol. 2002, 62: 58-64. 10.1124/mol.62.1.58.

Postigo AA, Dean DC: Differential expression and function of members of the zfh-1 family of zinc finger/homeodomain repressors. Proc Natl Acad Sci USA. 2000, 97: 6391-6. 10.1073/pnas.97.12.6391.

Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF, Goodall GJ: A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res. 2008, 68: 7846-54. 10.1158/0008-5472.CAN-08-1942.

Vandewalle C, Van Roy F, Berx G: The role of the ZEB family of transcription factors in development and disease. Cell Mol Life Sci. 2009, 66: 773-87. 10.1007/s00018-008-8465-8.

Moreno-Bueno G, Portillo F, Cano A: Transcriptional regulation of cell polarity in EMT and cancer. Oncogene. 2008, 27: 6958-69. 10.1038/onc.2008.346.

Fabre-Guillevin E, Malo M, Cartier-Michaud A, Peinado H, Moreno-Bueno G, Vallee B, Lawrence DA, Palacios J, Cano A, Barlovatz-Meimon G: PAI-1 and functional blockade of SNAI1 in breast cancer cell migration. Breast Cancer Res. 2008, 10: R100-10.1186/bcr2203.

Peinado H, Olmeda D, Cano A: Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype?. Nat Rev Cancer. 2007, 7: 415-28. 10.1038/nrc2131.

Korpal M, Kang Y: The emerging role of miR-200 family of microRNAs in epithelial-mesenchymal transition and cancer metastasis. RNA Biol. 2008, 5: 115-9.

Gregory PA, Bracken CP, Bert AG, Goodall GJ: MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle. 2008, 7: 3112-8.

Bracken CP, Gregory PA, Khew-Goodall Y, Goodall GJ: The role of microRNAs in metastasis and epithelial-mesenchymal transition. Cell Mol Life Sci. 2009, 66: 1682-99. 10.1007/s00018-009-8750-1.

Guaita S, Puig I, Franci C, Garrido M, Dominguez D, Batlle E, Sancho E, Dedhar S, De Herreros AG, Baulida J: Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression. J Biol Chem. 2002, 277: 39209-16. 10.1074/jbc.M206400200.

Korpal M, Lee ES, Hu G, Kang Y: The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem. 2008, 283: 14910-4. 10.1074/jbc.C800074200.

Bracken CP, Gregory PA, Khew-Goodall Y, Goodall GJ: The role of microRNAs in metastasis and epithelial-mesenchymal transition. Cell Mol Life Sci. 2009, 66 (10): 1682-99. 10.1007/s00018-009-8750-1.

Li Y, Boom Vanden TG, Kon D, Wan Z, Al S, Phili PA, Sarka FH: Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res. 2009, 69: 6704-12. 10.1158/0008-5472.CAN-09-1298.

Paterson EL, Kolesnikoff N, Gregory PA, Bert AG, Khew-Goodall Y, Goodall GJ: The microRNA-200 family regulates epithelial to mesenchymal transition. Scientific World Journal. 2008, 8: 901-4.

Park SM, Gaur AB, Lengyel E, Peter ME: The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008, 22: 894-907. 10.1101/gad.1640608.

Schmalhofer O, Brabletz S, Brabletz T: E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev. 2009, 28: 151-66. 10.1007/s10555-008-9179-y.

Raftopoulou M, Hall A: Cell migration: Rho GTPases lead the way. Dev Biol. 2004, 265: 23-32. 10.1016/j.ydbio.2003.06.003.

Vardouli L, Moustakas A, Stournaras C: LIM-kinase 2 and cofilin phosphorylation mediate actin cytoskeleton reorganization induced by transforming growth factor-beta. J Biol Chem. 2005, 280: 11448-57. 10.1074/jbc.M402651200.

Benitah SA, Valeron PF, van Aelst L, Marshall CJ, Lacal JC: Rho GTPases in human cancer: an unresolved link to upstream and downstream transcriptional regulation. Biochim Biophys Acta. 2004, 1705: 121-32.

Eger A, Stockinger A, Park J, Langkopf E, Mikula M, Gotzmann J, Mikulits W, Beug H, Foisner R: beta-Catenin and TGFbeta signalling cooperate to maintain a mesenchymal phenotype after FosER-induced epithelial to mesenchymal transition. Oncogene. 2004, 23: 2672-2680. 10.1038/sj.onc.1207416.

Gal A, Sjoblom T, Fedorova L, Imreh S, Beug H, Moustakas A: Sustained TGF beta exposure suppresses Smad and non-Smad signalling in mammary epithelial cells, leading to EMT and inhibition of growth arrest and apoptosis. Oncogene. 2008, 27: 1218-30. 10.1038/sj.onc.1210741.

Lacher MD, Tiirikainen MI, Saunier EF, Christian C, Anders M, Oft M, Balmain A, Akhurst RJ, Korn WM: Transforming growth factor-beta receptor inhibition enhances adenoviral infectability of carcinoma cells via up-regulation of Coxsackie and Adenovirus Receptor in conjunction with reversal of epithelial-mesenchymal transition. Cancer Res. 2006, 66: 1648-57. 10.1158/0008-5472.CAN-05-2328.

Nicolas FJ, Hill CS: Attenuation of the TGF-beta-Smad signaling pathway in pancreatic tumor cells confers resistance to TGF-beta-induced growth arrest. Oncogene. 2003, 22: 3698-711. 10.1038/sj.onc.1206420.

Abell AN, Granger DA, Johnson NL, Vincent-Jordan N, Dibble CF, Johnson GL: Trophoblast stem cell maintenance by fibroblast growth factor 4 requires MEKK4 activation of Jun N-terminal kinase. Mol Cell Biol. 2009, 29: 2748-61. 10.1128/MCB.01391-08.

Bolos V, Peinado H, Perez-Moreno MA, Fraga MF, Esteller M, Cano A: The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci. 2003, 116: 499-511. 10.1242/jcs.00224.

Wang X, Belguise K, Kersual N, Kirsch KH, Mineva ND, Galtier F, Chalbos D, Sonenshein GE: Oestrogen signalling inhibits invasive phenotype by repressing RelB and its target BCL2. Nat Cell Biol. 2007, 9: 470-8. 10.1038/ncb1559.

Yingling JM, Blanchard KL, Sawyer JS: Development of TGF-beta signalling inhibitors for cancer therapy. Nat Rev Drug Discov. 2004, 3: 1011-22. 10.1038/nrd1580.

Thuault S, Valcourt U, Petersen M, Manfioletti G, Heldin CH, Moustakas A: Transforming growth factor-beta employs HMGA2 to elicit epithelial-mesenchymal transition. J Cell Biol. 2006, 174: 175-83. 10.1083/jcb.200512110.

Haddad Y, Choi W, McConkey DJ: Delta-crystallin enhancer binding factor 1 controls the epithelial to mesenchymal transition phenotype and resistance to the epidermal growth factor receptor inhibitor erlotinib in human head and neck squamous cell carcinoma lines. Clin Cancer Res. 2009, 15: 532-42. 10.1158/1078-0432.CCR-08-1733.

Zeisberg M, Kalluri R: Reversal of experimental renal fibrosis by BMP7 provides insights into novel therapeutic strategies for chronic kidney disease. Pediatr Nephrol. 2008, 23: 1395-8. 10.1007/s00467-008-0818-x.

Hau P, Jachimczak P, Schlingensiepen R, Schulmeyer F, Jauch T, Steinbrecher A, Brawanski A, Proescholdt M, Schlaier J, Buchroithner J: Inhibition of TGF-beta2 with AP 12009 in recurrent malignant gliomas: from preclinical to phase I/II studies. Oligonucleotides. 2007, 17: 201-12. 10.1089/oli.2006.0053.

Fakhrai H, Mantil JC, Liu L, Nicholson GL, Murphy-Satter CS, Ruppert J, Shawler DL: Phase I clinical trial of a TGF-beta antisense-modified tumor cell vaccine in patients with advanced glioma. Cancer Gene Ther. 2006, 13: 1052-60. 10.1038/sj.cgt.7700975.

Schreiber S, Feagan B, D'Haens G, Colombel JF, Geboes K, Yurcov M, Isakov V, Golovenko O, Bernstein CN, Ludwig D: Oral p38 mitogen-activated protein kinase inhibition with BIRB 796 for active Crohn's disease: a randomized, double-blind, placebo-controlled trial. Clin Gastroenterol Hepatol. 2006, 4: 325-34. 10.1016/j.cgh.2005.11.013.

Tanihara H, Inatani M, Honjo M, Tokushige H, Azuma J, Araie M: Intraocular pressure-lowering effects and safety of topical administration of a selective ROCK inhibitor, SNJ-1656, in healthy volunteers. Arch Ophthalmol. 2008, 126: 309-15. 10.1001/archophthalmol.2007.76.

Lee DY, Sugden B: The latent membrane protein 1 oncogene modifies B-cell physiology by regulating autophagy. Oncogene. 2008, 27: 2833-42. 10.1038/sj.onc.1210946.

Ellison-Zelski SJ, Solodin NM, Alarig ET: Repression of ESR1 through actions of estrogen receptor alpha and Sin3A at the proximal promoter. Mol Cell Biol. 2009, 29: 4949-58. 10.1128/MCB.00383-09.

Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001, 25: 402-8. 10.1006/meth.2001.1262.