Complementary vasoactivity and matrix remodelling in arterial adaptations to altered flow and pressure

Journal of the Royal Society Interface - Tập 6 Số 32 - Trang 293-306 - 2009
Andreas Valentin1, L. Cardamone2, Seungik Baek3, Jay D. Humphrey1
1Department of Biomedical Engineering, 337 Zachry Engineering Center, 3120 TAMU, Texas A&M UniversityCollege Station, TX 77843-3120, USA
2Dipartimento di Ingegneria Civile, Università degli Studi di Salerno84084 Fisciano, Italy
3Department of Mechanical Engineering, Michigan State UniversityEast Lansing, MI 48824, USA

Tóm tắt

Arteries exhibit a remarkable ability to adapt to sustained alterations in biomechanical loading, probably via mechanisms that are similarly involved in many arterial pathologies and responses to treatment. Of particular note, diverse data suggest that cell and matrix turnover within vasoaltered states enables arteries to adapt to sustained changes in blood flow and pressure. The goal herein is to show explicitly how altered smooth muscle contractility and matrix growth and remodelling work together to adapt the geometry, structure, stiffness and function of a representative basilar artery. Towards this end, we employ a continuum theory of constrained mixtures to model evolving changes in the wall, which depend on both wall shear stress-induced changes in vasoactive molecules (which alter smooth muscle proliferation and synthesis of matrix) and intramural stress-induced changes in growth factors (which alter cell and matrix turnover). Simulations show, for example, that such considerations help explain the different rates of experimentally observed adaptations to increased versus decreased flows as well as differences in rates of change in response to increased flows or pressures.

Từ khóa


Tài liệu tham khảo

10.1115/1.2132374

10.1007/s10439-007-9322-x

10.1139/y91-147

10.1042/CS20060337

10.1016/j.freeradbiomed.2007.04.017

10.1002/bip.1977.360160604

Faraci F.M, 1990, Role of nitric oxide in regulation of basilar artery tone in vivo, Am. J. Physiol, 259, H1216

10.1114/1.1507326

10.1016/S0021-9290(02)00445-1

10.1161/01.RES.22.2.165

Fung Y.C Biomechanics: mechanical properties of living tissues. 2nd edn. 1993 New York NY:Springer.

10.1159/000080699

10.1016/j.jbiomech.2004.06.017

10.1093/imammb/dqi014

10.1115/1.1762899

10.1016/j.jbiomech.2006.03.018

10.1023/A:1010835316564

10.1016/j.jbiomech.2006.11.007

10.1007/s10439-006-9186-5

Humphrey J.D Cardiovascular solid mechanics: cells tissues and organs. 2002 New York NY:Springer.

10.1161/HYPERTENSIONAHA.107.103440

Humphrey J.D& Delange S.L An introduction to biomechanics: solids and fluids analysis and design. 2004 New York NY:Springer.

10.1114/1.1467676

10.1142/S0218202502001714

10.1146/annurev.bioeng.10.061807.160439

10.1016/S0021-9290(03)00178-7

10.1161/01.RES.0000016481.87703.CC

Kamiya A, 1980, Adaptive regulation of wall shear stress to flow change in the canine carotid artery, Am. J. Physiol, 239, H14

10.1139/y96-082

10.1126/science.3941904

Langille B.L, 1989, Adaptations of carotid arteries of young and mature rabbits to reduced carotid blood flow, Am. J. Physiol, 256, H931

10.1161/01.STR.22.4.499

10.1152/ajpcell.1992.263.2.C389

10.1161/01.ATV.19.10.2298

10.1115/1.2895731

10.1115/1.2795947

10.1161/01.RES.81.3.311

10.1161/01.RES.81.3.320

10.1073/pnas.12.3.207

10.1023/A:1010800703478

10.1114/1.191

10.1006/jmcc.1996.0480

10.1006/jmcc.1996.0023

10.1159/000169701

10.1161/01.RES.0000174614.74469.83

10.1172/JCI1699

10.1006/jsre.1998.5376

Slattery J.C Momentum energy and mass transfer in continua. 1981 New York NY:Krieger.

10.1159/000081972

10.1146/annurev.physiol.59.1.89

10.1115/1.2798001

10.1152/ajpheart.00684.2007

10.1152/ajpcell.1995.269.6.C1371

10.1115/1.2891128

10.1080/10255840801949793

10.1161/01.RES.26.4.507

10.1159/000025728

10.1067/mva.2001.112231

10.1085/jgp.69.4.449

10.1016/0741-5214(87)90048-6