Complementary learning systems within the hippocampus: a neural network modelling approach to reconciling episodic memory with statistical learning

Anna C. Schapiro1,2, Nicholas B. Turk‐Browne2, Matthew Botvinick3, Kenneth A. Norman2
1Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
2Princeton Neuroscience Institute and Department of Psychology, Princeton, NJ 08544, USA
3Google DeepMind, London EC4A 3TW, UK

Tóm tắt

A growing literature suggests that the hippocampus is critical for the rapid extraction of regularities from the environment. Although this fits with the known role of the hippocampus in rapid learning, it seems at odds with the idea that the hippocampus specializes in memorizing individual episodes. In particular, the Complementary Learning Systems theory argues that there is a computational trade-off between learning the specifics of individual experiences and regularities that hold across those experiences. We asked whether it is possible for the hippocampus to handle both statistical learning and memorization of individual episodes. We exposed a neural network model that instantiates known properties of hippocampal projections and subfields to sequences of items with temporal regularities. We found that the monosynaptic pathway—the pathway connecting entorhinal cortex directly to region CA1—was able to support statistical learning, while the trisynaptic pathway—connecting entorhinal cortex to CA1 through dentate gyrus and CA3—learned individual episodes, with apparent representations of regularities resulting from associative reactivation through recurrence. Thus, in paradigms involving rapid learning, the computational trade-off between learning episodes and regularities may be handled by separate anatomical pathways within the hippocampus itself.This article is part of the themed issue ‘New frontiers for statistical learning in the cognitive sciences’.

Từ khóa


Tài liệu tham khảo

10.1037/0033-295X.102.3.419

10.1111/j.1551-6709.2011.01214.x

Schapiro AC, 2015, Brain mapping: an encyclopedic reference, 501, 10.1016/B978-0-12-397025-1.00276-1

10.1162/jocn_a_00578

10.1002/hipo.22523

10.1016/j.cub.2012.06.056

10.1523/JNEUROSCI.0858-10.2010

10.1111/j.1460-9568.2011.07920.x

10.1016/j.neunet.2005.11.002

10.1016/j.neunet.2004.12.004

10.1162/jocn.2009.21131

10.1037/0033-295X.110.4.611

10.1371/journal.pcbi.1003067

10.1002/hipo.22310

10.1037/0278-7393.28.3.458

10.1126/science.274.5294.1926

10.1016/S0010-0277(02)00004-5

10.1016/j.dcn.2015.08.009

10.1038/nn.3331

10.3389/fnhum.2012.00070

10.1037/a0028681

10.1037/0033-295X.108.2.311

10.1016/j.neunet.2008.06.016

O'Reilly RC, 2014, Computational cognitive neuroscience, 2

10.7551/mitpress/2014.001.0001

10.1162/neco.1996.8.5.895

10.1162/089976602317318965

10.1016/0006-8993(93)90043-M

10.1371/journal.pbio.0040424

10.1016/S0896-6273(00)81085-5

10.1152/jn.1997.78.2.1062

10.1037/0033-295X.112.1.75

10.1037/0735-7044.106.5.762

10.1523/JNEUROSCI.18-16-06568.1998

10.1037/0735-7044.108.1.11

10.7551/mitpress/6161.001.0001

10.1098/rstb.2008.0316

10.1146/annurev.psych.60.110707.163508

10.1038/nn.4284

10.1016/j.bbr.2013.02.007

Fortunato S, 2010, Community detection in graphs, Phys. Rep. Rev. Sect. Phys. Lett, 486, 75

10.3389/fnhum.2012.00157

10.1016/S0896-6273(00)00071-4

10.1523/JNEUROSCI.0926-10.2010

10.1126/science.1135801

10.1016/S0166-4328(99)00044-3

10.1037/0096-3445.114.2.159

10.1098/rstb.2016.0057

10.1002/(SICI)1098-1063(1996)6:6<654::AID-HIPO8>3.0.CO;2-G

10.1101/lm.59103

10.1038/416736a

10.3389/fnsyn.2013.00005

10.1037/a0015002

10.1093/cercor/bhl143

10.1016/j.neuron.2012.05.010

10.1016/j.cobeha.2014.07.005

10.1016/j.neuron.2008.09.023

10.1002/hipo.20009

10.1016/j.neuroimage.2009.09.042

10.1038/ncomms9151

10.1038/nn.4138

10.1002/hipo.10189

10.1016/j.tics.2013.03.005

10.1523/JNEUROSCI.5808-12.2014

10.1002/hipo.22333

10.1146/annurev.neuro.31.061307.090723

10.1111/1467-9280.00392

10.1038/12222

10.1126/science.1210125

10.1016/j.nlm.2007.04.013

10.1016/j.neuron.2007.08.017

10.1523/JNEUROSCI.2874-15.2016

10.1073/pnas.94.16.8918

10.1073/pnas.1508785112

10.1016/j.neuroimage.2016.03.048

10.1002/(SICI)1098-1063(1996)6:6<579::AID-HIPO3>3.0.CO;2-C

10.1152/jn.1997.78.1.393

10.1101/lm.3.2-3.279

10.1002/(SICI)1098-1063(1996)6:3<271::AID-HIPO5>3.0.CO;2-Q

10.3389/fncel.2013.00098

10.1016/j.pneurobio.2006.04.005

Myers CE, 1995, Dissociation of hippocampal and entorhinal function in associative learning: a computational approach, Psychobiology, 23, 116, 10.3758/BF03327068

10.1016/S1364-6613(03)00105-0

10.3758/CABN.2.3.214

10.1037/0735-7044.114.5.867

10.1016/j.tics.2015.04.006

10.1038/nrn2277

10.1006/nlme.1998.3835

10.1016/j.neuron.2004.05.010

10.1038/nn790

10.1126/science.1151120

10.1126/science.291.5504.661

10.1523/JNEUROSCI.23-07-02861.2003

10.1523/JNEUROSCI.19-23-10404.1999

10.1006/nlme.1998.3848

10.1016/j.tics.2014.12.010

10.1098/rstb.2016.0059

10.1037/0735-7044.122.3.643

10.1016/j.neuron.2010.01.034

Bornstein AM, 2015, What's past is present: reminders of past choices bias decisions for reward in humans, bioRxiv

10.1038/ncomms11066

10.1037/0033-295X.114.4.887

10.1162/neco.2006.18.7.1577

10.1093/cercor/bhu284